
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

4Jan.OO

3. REPORT TYPE AND DATES COVERED

DISSERTATION
4. TITLE AND SUBTITLE

A DATA COLLECTION AND REPRESENTATION FRAMEWORK FOR
SOFTWARE AND HUMAN-COMPUTER INTERACTION MEASUREMENTS

6. AUTHOR(S)

MAJ MATHIAS KARL S

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AUBURN UNIVERSITY MAIN CAMPUS
PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-633

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS IS. NUMBER OF PAGES

169
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

xyncQUAiirr DJBFBCTKD I
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

DISSERTATION ABSTRACT

A DATA COLLECTION AND REPRESENTATION FRAMEWORK

FOR SOFTWARE AND HUMAN-COMPUTER

INTERACTION MEASUREMENTS

Karl Steven Mathias

Doctor of Philosophy, December 11,1999
(M.S., Air Force Institute of Technology, 1993)

(B.S., Utah State University, 1986)

Directed by James H. Cross II

This dissertation presents a framework for capturing, storing, and correlating human-

computer interaction measures and software attribute measures. Discovering how

computer programmers comprehend software has long been a problem in the field of

computer science. Researchers want to understand what strategies programmers take as

they look at software so that superior strategies can be investigated and documented.

This involves collecting interaction and comprehension measures. Industry wants to

determine when software will cause the greatest problems in comprehension, and if the

software can be changed to ease this learning curve. This involves the collection of

software attribute measures.

A framework for the collection and correlation of both measures was developed based

upon a straight-forward mathematical model. In this model, a user action is combined

iii

20000112 040

with the state of the software being manipulated at a specific point in time. This

combination of action, software state, and time forms a unique tuple. This tuple is then

the core element of analysis procedures which determine how software state affects user

actions. From a mathematical standpoint, the framework components maintain sets of

these tuples, organized by user session.

The framework was designed and implemented using object-oriented techniques. It

consists of a several key subsystems: the development environment, a set of core data

collection components, and an analysis tool. The core components were the focus of the

research, and consist of Java classes which handle event collection, storage, and

extraction for analysis in a portable manner.

The framework was tested by integrating it with a development environment for

Microsoft Windows 98 called pcGRASP. To analyze the results of data generated by

pcGRASP, an analysis tool was developed called the Collection Framework Analyzer

(CFA). The framework was then tested to ensure that data generated by pcGRASP was

stored accurately by CFA, that large datasets could be stored, that software attribute

information was correctly handled, and that framework data was portable regardless of

the host operating system that it was originally generated under.

The Framework gives researchers and industrial users a method for conducting long-

term studies of what makes a development environment effective, and how to maximize

comprehension in hopes of lowering defect rates in software.

IV

A DATA COLLECTION AND REPRESENTATION FRAMEWORK

FOR SOFTWARE AND HUMAN-COMPUTER

INTERACTION MEASUREMENTS

Karl Steven Mathias

Certificate of Approval:

Kai-Hsiung Chang
Professor
Computer Science and
Software Engineering

James H. Cross II, Chairman
Professor
Computer Science and
Software Engineering

T. Dean Hendrix
Assistant Professor
Computer Science and
Software Engineering

John F. Pritchett, Dean
Graduate School

A DATA COLLECTION AND REPRESENTATION FRAMEWORK

FOR SOFTWARE AND HUMAN-COMPUTER

INTERACTION MEASUREMENTS

Karl Steven Mathias

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama

December 11,1999

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. James Cross II, for his help in guiding my work

on this dissertation. His clear vision on the potential of this research helped my

intellectual and professional growth immensely. Sincere appreciation also to my

committee members for their time and patience as this work progressed.

My thanks to Mr. Kenneth Lavoie who directed me to this opportunity and pushed me

to test my limits. He was, and I suspect always will be, the best boss I've ever had.

My gratitude and love to family and friends who supported me through years of study,

work, and twisted schedules.

Finally, to the high school English teacher who made such a key difference in my life,

so many years ago: Thank you Mr. Odell, for teaching me that words are so much more

than just marks on a page.

Style Manual or Journal used

Association of Computing Machinery Computing Surveys

Computer Software used

Microsoft Word 97

VI

TABLE OF CONTENTS

CHAPTER 1. OVERVIEW 1

1.1 Introduction 1

1.2 Traditional Software Measurement 1

1.3 Program Comprehension 3

1.4 The Measurement Problem 4

1.5 A Data Collection Framework 5

1.6 Research Work 6

1.7 Organization of the Dissertation 7

CHAPTER 2. LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Software Quality 9

2.3 Software Measurement Concepts 13

2.4 Program Comprehension 35

2.5 Data Collection in Usability Studies 50

CHAPTER 3. THE DATA COLLECTION PROBLEM 53

3.1 Introduction 53

3.2 Correlation of Comprehension and Software Measures 53

vii

3.3 Data Collection 55

3.4 Data Representation 57

3.5 Data Storage and Analysis 62

CHAPTER 4. THE DATA COLLECTION FRAMEWORK 64

4.1 Introduction 64

4.2 The Framework Conceptual Model 64

4.3 Development Methodology 67

4.4 Architecture 69

4.5 Implementation 93

CHAPTER 5. CASE STUDY: INTEGRATION WITH PCGRASP 109

5.1 Introduction 109

5.2pcGRASP 109

5.3 Enhancements to pcGRASP 114

5.4 Analysis System 118

5.5 Tests Conducted 132

CHAPTER 6. CONCLUSIONS 139

6.1 Introduction 139

6.2 Does the Framework Meet Its Goals? 139

6.3 Impact of the Framework 141

6.4 Future Work 143

viii

REFERENCES 146

APPENDIX A. ASCII EVENT FILE FORMAT 158

APPENDIX B. TEST SCRIPTS, FILES, AND RESULTS 161

B.l Data Test 161

B.2 Metrics Collection Test 164

B.3 Data Load Test 169

IX

LIST OF FIGURES

Figure 2-1. Program Control Flow Graph 26

Figure 2-2. Design Complexity Example 28

Figure 2-3. Complexity Profile Graph 29

Figure 2-4. Cognitive Design Elements for Software Tools 42

Figure 2-5. CSD Example 49

Figure 4-1. Conceptual Model for the Framework 65

Figure 4-2. Framework Architecture 72

Figure 4-3. Software Package Dependencies in the Framework 73

Figure 4-4. Generic Class from Events and Example 75

Figure 4-5. Example of Modified State Representation 76

Figure 4-6. Root and Session Events 77

Figure 4-7. Window Events 80

Figure 4-8. Line Events 82

Figure 4-9. Framework Classes 84

Figure 4-10. Database Relations 89

Figure 4-11. Example of Using CFInterface 98

Figure 4-12. Event Writing/Reading Processes 100

Figure 4-13. JDBC Connectivity 103

x

Figure 5-1. pcGRASP Main Screen 110

Figure 5-2. pcGRASP Components 113

Figure 5-3. pcGRASP Collection Dialog 116

Figure 5-4. Group Associations 119

Figure 5-5. CFA Class Diagram 122

Figure 5-6. Chart Package Class Diagram 125

Figure 5-7. Solid and Stacked Bar Charts 126

Figure 5-8. Line, Scatter, and Pie Charts 127

Figure 5-9. Collection Framework Analyzer 128

Figure 5-10. CFA Preferences Dialog 131

XI

LIST OF TABLES

Table 2-1. Categories of Measures 15

Table 2-2. Weights for Function Points 20

Table 2-3. SPR Programming Languages 23

Table 5-1. Database Load Test Results 136

Xll

CHAPTER 1. OVERVIEW

1.1 INTRODUCTION

Industry and researchers share a common problem in the realm of empirical studies of

programmers. Both require the ability to measure software characteristics, and the ability

to measure the effectiveness of the programmer who writes the software. Industry

requires it so that it can improve quality and productivity, while researchers need it to

understand the software development process. When either attempts to collect

measurements using conventional means, they must interrupt the programmer to ask

questions. Barring that, they must force the programmer to take unnatural actions such as

"thinking aloud" that might influence their behavior. What is needed for both academic

and industrial use is the ability to take measurements without intruding on the

programmer's thought process. This dissertation presents a solution to this problem in

the form of a framework that supports the automatic collection and analysis of human-

computer interaction and software measures.

1.2 TRADITIONAL SOFTWARE MEASUREMENT

The field of software measurement has grown up around a desire to improve the

delivered software product. Improvements can be considered in terms of the quality and

of the cost of the software delivered. Quality is a relative term which will be defined

more precisely in the next chapter, but in general it refers to a product which meets user

1

requirements and is reliable within a given tolerance level. Cost refers to the amount of

effort and resources required to produce the product.

Quality and cost factor measurements can be performed directly. For example, if

quality were defined as the number of unique failures of a software product during the

first year of delivery, then each new failure would be recorded in a log, resulting in a

numeric value representing the "quality" of the product. In this case, the quality would

be the same as the failure rate. Cost can be measured directly by recording the number of

hours spent by staff on a product, multiplied by their salaries, then adding in the dollar

cost of resources used such as computing hardware and off-the-shelf software packages

used.

What the software engineering community strives to do, however, is to predict the

quality and cost of software before and during the development of the software.

Prediction implies that properties of the software being developed are analyzed and then

key attributes of these properties are used as predictors of the end result. Over the past

two decades, several hundred proposed methods for predicting on the basis of attribute

measures have been proposed [Zuse 1997]. Many of these proposed methods have never

been empirically validated, or have suspect methodology, yet have been used extensively

in both industry and in academia [Basili and Weiss 1984, Fenton 1994, Fenton, Pfleeger,

and Glass 1994].

1.3 PROGRAM COMPREHENSION

Another area of considerable interest to researchers is program comprehension during

development and maintenance of software. The key interest is in learning how

programmers understand existing code so that it can be changed, and how programmers

use development environments while making the changes. As with software

measurement, the human-computer interaction research community sees the

improvement of the actual development process itself as a way to improve the quality and

lower the cost of the software product.

One of the more interesting areas of study in the program comprehension field is

program visualization. Program visualization seeks to show that replacing or enhancing

program text with graphical images improves the ability of a programmer to understand

the software being worked on. As with software measures, graphic representations are

typically static snapshots of the software that are presented to the programmer.

Considerable work is being done, however, to study the effectiveness of animated

(dynamic) graphic representations of computer code.

Other visualization techniques seek not to replace the program code, but to enhance it.

This enhancement may be as simple as formatting the code with indentation, changing

the font of the text, or changing the color of the text. More involved techniques overlay

the code itself with graphic symbols designed to enhance the understanding of the

programmer.

Measuring the effectiveness of these techniques has generally involved gathering

empirical measures via experiments. There are several techniques for performing these

experiments, but the usual method is to expose a test group to a graphic representation of

program code and a control group to the textual representation. Subjects are then tested

for comprehension. Another method is to have the groups make changes to code and

then compare defect rates.

1.4 THE MEASUREMENT PROBLEM

Software measurement and program comprehension are closely related in several ways.

They both seek, indirectly, to improve the quality and cost of software. They make use

of measurement as a tool for determining whether progress toward the goal of better

software. Empirical studies are performed in both areas to gather these measurements.

Both areas examine the attributes of the underlying software as part of the study process.

While there are many tools available for collection of static software measurements,

there are very few available to assist in the study of program comprehension. Tools that

do exist are usually special-purpose devices applicable only to the field of program

comprehension and not generally suitable for industrial use. There were no tools found

which collect and correlate data for both static software measurements and program

comprehension.

The lack of tools to collect this data presents a problem for a company or research

group which creates a tool for developing software. For example, they may create an

integrated development environment (IDE) for producing Java code. Or they may

develop an environment for creating structure diagrams that can assist the programmer

with automatically generated code. However, without a way to measure how the

programmers use these devices, and the effect ofthat use on the software being

developed, it is difficult to determine how effective the environment is.

Another problem with measurement involves human factors. Programmers generally

want to write code and minimize any administrative details that go along with that task.

Managers in companies, researchers on projects, and programmers following the personal

software process (PSP) [Humphrey 1997] require measurements to determine progress,

quality, and cost. However, if measurement requires the programmer to stop and make a

manual entry, either on paper or on a computer form, then their task is interrupted. The

effect of this is that programmers begin to avoid the task, or do not put down accurate

information [Perry et al. 1994, Basili and Weiss 1984]. Because of this, mechanisms are

needed that minimize the impact on them.

1.5 A DATA COLLECTION FRAMEWORK

This dissertation presents a solution to these problems in the form of a data collection

framework. The framework is a flexible set of software components that can be used by

development environments for collecting, storing, organizing, and analyzing programmer

and software measurements. The framework's architecture makes it easily adaptable to

different environments, and the implementation of the framework in Java makes it

portable across many platforms.

It is a relatively simple task to write a routine in an environment to collect and display

summary information. What makes this framework unique is its ability to collect

information and show not just a summary, but a timeline of user actions and software

changes as they occurred. For example, instead of just knowing how many compiles a

user made, it is possible to determine when the compiles occurred and the state of the

software before each compile. As will be shown in Chapter 3, this is an important

requirement for meaningful analysis.

The collection framework assumes three major systems exist. The first system is the

development environment or tool. The second are the collection framework core

components, which are used by the environment to store information. The third system is

the analysis back-end tool which extracts the information from the framework and

performs analysis and display. As part of this work, a package of Java utilities were

developed to assist in the creation of meaningful reports and charts for the analysis

system.

1.6 RESEARCH WORK

This document reports on the investigation which lead to the framework being developed

and implemented. A primary concern during the investigation was ensuring the design of

the framework would support the goals of GRASP (Graphical Representations of

Algorithms, Structures and Processes). The GRASP research project at Auburn

University required a tool to collect software and usage metrics for the combined study of

program complexity and software visualization. In order to determine how programmers

7

use the Control Structure Diagram (CSD) in their programming process, GRASP had to

be able to record their actions. Since there could be several hundred subjects

participating, the data must be collected and stored in a central repository for later

analysis.

Using object-oriented techniques combined with a relational database storage

mechanism, the framework was successfully constructed and integrated with pcGRASP.

Test sessions were conducted to show that data could be successfully collected in real

time from pcGRASP without impacting the programmer. This same data was

successfully extracted and analyzed using a graphical analysis tool built for the GRASP

project as part of this dissertation. Test sessions were also conducted to ensure that the

framework and analysis tool could operate on multiple operating systems, without regard

to the host operating system of the development environment supplying the data.

Specifically, the system was successfully tested under Linux and Windows 98.

1.7 ORGANIZATION OF THE DISSERTATION

The dissertation is organized into six chapters. Chapter Two presents a background

investigation into current research of software metrics, program comprehension, and

software visualization. Chapter Three presents a detailed analysis of the problem with

collecting and analyzing measurements of this data. Chapter Four is a detailed

description of the design rationale behind the framework. Chapter Five describes how

the framework was tested by enhancing pcGRASP and developing a graphical analysis

8

tool. Chapter Six discusses the results of the framework's integration, the benefits of this

approach, and future work to be conducted in this area.

CHAPTER 2. LITERATURE REVIEW

2.1 INTRODUCTION

This section will look at some of the work that has been done in areas that bear on the

problem of tying software measurements to program comprehension. Since the goal is to

improve software quality and lower cost, discussion will start by examining what

"quality" means in relation to software. Next, the field of software measurements will be

examined. This is followed by a discussion on the work being done in program

comprehension. The review concludes with a look at the current state of work being

done in automatic data collection for usability studies.

2.2 SOFTWARE QUALITY

The purpose of software measurement is to assist in tracking and improving software

quality. In order to understand whether this is successful, it is essential the term software

quality be carefully defined. As starting point for looking at the generic term quality, one

can look at a standard definition such as that contained in The American Heritage

Dictionary:

Quality. 1. The essential character of something; nature. 2. A

characteristic or attribute; property. 3. Degree of excellence. 4. High

social position. [Heritage 89]

10

This can be applied to software by measuring the characteristics and attributes of

software development artifacts. The question that software engineers struggle to answer

is: "What attributes of software should be measured to determine the existence of high or

low quality?" Even before that discussion can begin, it is necessary to define what is

"high" and what is "low" in terms of quality. This is usually done in terms of certain key

factors. Three major definitions of what factors determine software quality will be

examined.

2.2.1 McCall's Quality Factors

In 1976, a study was conducted on behalf of the United States Air Force's Rome

Laboratory. The purpose of this study was to create a handbook for Air Force acquisition

managers that would guide them in specifying the overall quality of a software system in

contracts [Fedchak and Vienneau 1996]. The result of this study was a set of guidelines

known within the Air Force as the Rome Laboratory Software Quality Framework

(RLSQF). RLSQF was created by James McCall and Gene Walters and contained one of

the first, and most widely quoted, formalizations of the term software quality.

McCall [McCall et al. 1977] proposed a set of key software quality factors that affect

software quality (as listed in [Pressman 1997]):

- Correctness. The extent to which a program satisfies its specification and fulfills

the customer's mission objectives.

- Reliability. The extent to which a program can be expected to perform its

intended function with required precision.

11

- Efficiency. The amount of computing resources and code required by a program

to perform its function.

- Integrity. The extent to which access to software or data by unauthorized persons

can be controlled.

- Usability. The effort required to learn, operate, prepare input, and interpret output

of a program.

- Maintainability. The effort required to locate and fix an error in a program.

- Flexibility. The effort required to modify an operational program.

- Testability. The effort required to test a program to ensure that it peforms its

intended function.

- Portability. The effort required to transfer the program from one hardware and/or

software system environment to another.

- Reusability. The extent to which a program [or parts of a program] can be reused

in other applications.

- Interoperability. The effort required to couple one system to another.

2.2.2 Boehm 's Quality Model

Boehm conducted a study of quality factors at TRW. In the Boehm quality model, the

following are proposed as key quality factors (as defined in [Boehm et al. 1978]):

- Understandability. A software product possesses this characteristic to the extent

that the purpose of the product is clear to the evaluator.

12

- Portability. Can the product stand by itself, or to what extent does it require

additional resources.

- Maintainability. A product has this characteristic to the extent that it facilitates

updating to satisfy new requirements.

- Testability. A software product possesses the characteristic testability to the

extent that it facilitates the establishment of acceptance criteria and supports

evaluation of its performance.

- Usability. A software product possess this characteristic to the extent that it is

convenient and practicable to use.

- Reliability. A product has this characteristic to the extent that it can be expected

to perform its intended functions satisfactorily.

- Efficiency. A software product possesses efficiency to the extent it fulfills its

purpose without waste of resources.

2.2.3 FURPS

Another set of factors is that used by Hewlett-Packard. FURPS (Functionality,

usability, reliability, performance, supportability) is part of a company-wide effort to

establish a metrics program [Grady and Caswell 1987].

The FURPS factors are:

- Functionality. The product's feature set, capabilities, generality, and security

determine this factor.

13

- Usability. This factor is determined by the product's human factors, aesthetics,

consistency, and documentation.

- Reliability. The product's frequency/severity of failure, recoverability,

predictability, accuracy, and mean time to failure.

- Performance. The product's speed, efficiency, resource consumption,

throughput, and response time.

- Supportability. Determined by testability, extensibility, adaptability,

maintainability, compatibility, configurability, serviceability, installability.

After years of use at Hewlett-Packard, FURPS retains its usefulness. Grady attributes

some of this success to the fact that the acronym itself is easy to remember. The system

currently in use is FURPS+ which reflects some minor additions to the definition, most

notably that of "localization" which refers to the ease with which a software system may

be moved to different world locales where English may not be the predominant language

or system of measurement [Grady 1992].

2.3 SOFTWARE MEASUREMENT CONCEPTS

In order to determine whether the quality of software is improving, it is necessary to

measure. The question is: what should be measured?

To answer this, the general model for software measurement uses the following terms:

Entities. In terms of software, these are the products, processes, or resources

that are observed and manipulated in some manner [Kitchenham et al. 1995]. For

14

example, a program executable is an example entity that can be observed, and

may be manipulated in some manner such as reducing the number of times it fails.

Attributes. Attributes are properties of an entity that can be measured. By

"measure" the implication is that some relationship can be captured between an

attribute in the real world and its corresponding value in the mathematical world

[Kitchenham et al. 1995]. A mapping of the attribute "run time" to the set of real

numbers would be an example of this type of relationship.

For software, attributes can be further broken down into those that are internal and

those that are external [Fenton and Pfleeger 1997]. External attributes are measured not

by examining the entity itself, but instead by measuring the behavior of the entity. For

example, the number of failures in a program executable might be measured. The quality

factors discussed in Section 2.1 can be considered external attributes of software

products, processes, and resources. The problem with these attributes is that they can

typically only be measured at the end of the software development process.

Internal attributes are measured by examining the entity directly, without regard to its

behavior. For example, one might measure the size of an executable program in the

number of bytes of hard disk space used (assuming a need for such a measurement). An

advantage of internal attributes is that many can be measured during development.

15

The goal is to use internal attributes as predictors of the final quality attributes by

defining axiomatic or empirical relationships between them. There are a large number of

attributes that can be measured, many thousand potential measures have been proposed.

Some potential categories are listed in Table 2-1.

While all of these potential areas of collection hold interest, for the purposes of this

research, this discussion will focus on those dealing with the code. The reason for this is

that it is necessary to find a method by which measurements can be automatically

collected and stored. Specifically, measurements need to be taken as the programmer

Entities Internal Attributes
Products
Specifications Size, reuse, modularity, redundancy,

functionality, syntactic correctness,...
Designs Size, reuse, modularity, coupling,

cohesiveness, functionality, ...
Code Size, reuse, modularity, coupling, functionality,

algorithmic complexity, control-flow
strucruredness, ...

Test data Size, coverage level,...

Processes
Construction
specification

Time, effort, number of requirements changes,

Detailed Design Time, effort, number of specification faults
found,...

Testing Time, effort, number of coding faults found, ...

Resources
Personnel Age, price, ...
Teams Size, communication level, structuredness, ...
Software Size, price,...
Hardware Size, price, speed, memory,...
Offices Size, temperature, light,...

Table 2-1. Categories of Measures [Fenton97].

16

develops the code product, with an additional focus on aspects of their usage of the

development environment (see Section 3.2).

2.3.1 Code Metrics

This section will consider one narrow aspect of software measurement, that of code

measurements. As indicated previously by [Fenton and Pfleeger 1997], there are many

measures that can be taken of code attributes. A quick review of the literature generally

finds this type of data split into a few categories: size, structure, and measurements

unique to the object-oriented paradigm.

2.3.2 Size

Measures of program size are important to industry since they can be used to predict the

cost of development. The following sections discuss three methods for measuring size:

lines of code, token counting and function point computation.

2.3.2.1 Lines of Code

One of the simplest measurements of size is to count the number of lines of code (LOC)

in a unit of software. Watts Humphrey's Personal Software Process (PSP) uses LOC as a

predictor of cost in terms of programming effort [Humphrey 1997]. LOC is almost

universally discounted as a valid measure quality factors primarily because the number of

lines of code can be easily influenced by a specific programmer's style, whether

intentional or unintentional [Shepperd and Ince 1993].

17

Even though LOC is a simple metric to collect, there is great difficulty in defining

exactly what constitutes a "line of code." As pointed out by Capers Jones, despite the

fact that programmers have been generating lines of code for many decades, there is no

true international standard for how to count them [Jones 1991]. The easiest way to count

LOC is by simply taking a count of all the physical lines in the source code. This causes

problems, however, when considering languages such as Ada and C that allow statements

to be split across line boundaries. Style differences will result in different LOC values

for programs implementing identical functionality.

Software Productivity Research, Inc. (SPR) has proposed some rules for counting

source code [Jones 1991]:

- Multiple Languages. Count each language's source separately.

- Source Code Termination. Count by statement delimiters, not by physical lines.

- Source Code Counting. Count executable statements and data definitions, do not

count comments.

- Macro Instructions and Expansions. Count all macro instructions and each

unique expansion of a macro.

- Code Categories. The SPR recommends keeping separate counts for reused code,

program generator input/output code, job control language, baseline code,

changed code, deleted code, support code, and test code.

In general, it is agreed that LOC is not a good predictor of quality factors and of

complexity [Bieman 1996]. It suffers from having a poor definition, and even when a

18

definition is given, style differences between programmers can produce radically

different LOC values, sometimes by a factor of 5 to 1 [Jones 1991].

LOC is useful in one respect, however. It can be used as a baseline against which

other measures can be compared for effectiveness [Shepperd and Ince 1993, Basili and

Hutchens 1983]. For empirical studies, this gives researchers a "null hypothesis" to work

against.

2.3.2.2 Tokens

As an alternative to using LOC as a sizing measure, Maurice Halstead proposed a set of

"laws" styled after the laws of thermodynamics in physics [Halstead 1977]. Software

science laws are based on the number primitive measures of a program, combined with

the ability of the brain to process information. These measures are:

jux =the number of total operators in a program

ju2 = the number of total operands in a program

TV, =the total number of operators in a program

N2 =the total number of operands in a program

Using these primitives, the length of a program is defined as:

N = Nt+N2

The vocabulary of a program is defined as:

// = //!+//2

19

The volume of a program, which is defined as the number of bits required to represent

the program, is:

V = N x log2 ju

Using the length measure, LOC can be estimated by dividing it by a language

dependent constant. For example, in machine language where an instruction consists of

an operator and an operand the constant is defined as 2. For FORTRAN, it is defined as

7.

Software science is a very controversial set of measures, and there have been many

concerns over its validity. Problems exist in the ability among researchers to agree on

how to count operators and operands. There are problems in taking the original counting

mechanisms to languages other than FORTRAN. There are serious concerns regarding

the derivation of the formulas, especially in the application of human cognition concepts.

A more complete discussion of these concerns can be found in [Henderson-Sellers 1996]

and [Fenton and Pfleeger 1997].

2.3.2.3 Function Points

Another way to look at the problem of determining a program's size is to see things from

the point of view of the user. The user is not interested in the amount of code delivered,

since the difference between a 10 KLOC (thousand lines of code) program and a 100

KLOC program is immaterial if they accomplish the same purpose. The user is interested

in delivered functionality.

20

In the mid-1970's, A. J. Albrecht at the IBM Corporation realized the mismatch

between software units of production, lines of code, and software units of consumption,

functions [Jones 1991]. His solution was to invent an abstract concept of software

production based on factors of interest to the end user. The function point concept was

first published in 1979 [Albrecht 1979], significantly revised in 1984 [Albrecht 1984],

and continues to be revised by the International Function Point Users Group (IFPUG).

FUNCTION POINT COMPUTATION PROCEDURE

To compute function points (FP) according to the 1984 method, two steps are required

(as shown in [Kan 1995]):

First, the function counts (FC) are computed according to the formula:

5 3

«•=1 7=1

WyXXy

Where wy is a weight factor selected from the following Table 2-2, and x& is the

number of components of the type referenced by wtj.

Next, the FC is adjusted by assessing the impact of 14 system characteristics. Each of

the following characteristics are given a rating from 0 (no impact) to 5 (high impact):

Factor Low Complexity Medium Complexity High Complexity
External Input 3 4 6
External Output 4 5 7
Logical Internal File 7 10 15
External Interface 5 7 10
External Inquiry 3 4 6

Table 2-2. Weights for Function Point Components.

21

1. Data Communications

2. Distributed Functions

3. Performance Objectives

4. Heavily Used Configuration

5. Transaction Rate

6. On-line Data Entry

7. End-User Efficiency

8. On-line Update

9. Complex Processing

10. Reusability

11. Installation Ease

12. Operational Ease

13. Multiple Sites

14. Facilitate Change

The total value adjustment factor (VAF) for FC is computed according to the formula:

14

VAF = 0.65 + 0.01^0,
!=1

Where ci is the impact rating for one of the characteristics above. This yields a VAF

in the range 0.65 - 1.35. To compute FP, multiply VAF by FC:

FP = FCxVAF

22

THE SOFTWARE PRODUCTIVITY RESEARCH (SPR) INC. METHOD

In 1985, SPR developed an alternative method for measuring function points. The

original factors used in the Albrecht method remain, but the complexity adjustment is

greatly simplified. This simplified method has been shown to be accurate, on average, to

within 1.5 percent of the Albrecht method [Jones 1991]. The following procedure is used

to compute FP, using the SPR method.

First, as in the Albrecht 1979 method, FC is computed according to the following

formula:

5

FC = £w,.xx;

Where wt is a component weight factor taken from the medium complexity column of

Table 2-2, and xi is the number of those components in the system.

Next, the FC is modified by rating two complexity areas on a scale from 1 (low) - 5

(high). The first area being complexity of the problem (algorithms, calculations), and the

second area being complexity of the data (number of variables, structures). VAF is then

computed according to the formula:

K4F = 0.4 + 0.1(c,+c2)

Where cx and c2 are the ratings for problem and data complexities respectively. FP is

then computed in the usual manner:

FP = FCxVAF

23

T . Average Source Statements Per Function Point
Language Level " (ASSFP)

Assembly Language 1.0 320
Ada95 6.5 49
C 2.5 128
C++ 6.0 53
Java 6.0 53
VHDL 17.0 19

Table 2-3. SPR Programming Languages

SPR BACKFIRE

SPR uses their method of computing function points as a way to also automatically

estimate the size of the resulting source code. This has been done by empirically

evaluating several projects at differing levels of complexity to determine the average

number of statements required per function point for those projects. Based on this

information, SPR has rated different languages assigning each an average number of

statements required for that language to implement a function point. Statements are

counted using the method described in Section 2.2.2.1. A portion of SPR's 1996

Programming Language's Table [Jones 1996a] is shown in Table 2-3.

Note that in Table 2-3, assembly language is considered the baseline language. To

determine a language's level, 320 (the ASSFP for the baseline), is divided by the ASSFP

for the other language. SPR uses this when comparing similar languages where empirical

data may not yet be available. For example, note the similar values of C++ and Java in

Table 2-3.

24

To estimate a project's final LOC, FP is computed as shown previously. The target

language is then selected and the ASSFP is multiplied by the project's FP to determine

LOC.

Using the same principle, the LOC for an existing software system can be used to

estimate its original FP. SPR refers to this estimation as "backfiring" function points

[Jones 1991]. Backfiring is accomplished by first collecting the LOC value for the

software using the SPR method described in Section 2.2.2.1. FC is then computed as:

ASSFP

Next, the user must rate the existing software from 1 - 5 in three categories: problem

complexity, code complexity and data complexity. Using these factors, a VAF is

computed as:

VAF = 0.70 + 0.05(c, + c2 + c3 - 3)

Where cx is problem complexity, c2 is code complexity and c3 is data complexity.

FP is then computed by dividing the VAF into FC:

VAF

2.3.3 Structural Measures

Size measures are generally used as indicators of how much effort was required to

produce a program. Structural measures examine how code is put together and are used

to predict the quality of the software. The following sections discuss three methods of

25

measuring structure: cyclomatic complexity, design complexity and the complexity

profile.

2.3.3.1 Cyclomatic Complexity

In 1976, Thomas McCabe proposed a measure of software complexity [McCabe 1976].

Making extensive use of graph theory, McCabe posited that applications with a large

number of possible control paths would be more complex to understand, more difficult to

maintain, and more difficult to test. The idea being that if two programs A and B have

numbers of control paths such that A's count is larger than B's count, then A is

considered more complex than B.

The problem with computing control paths is that if a program has a backward branch

in its path, then the number of paths a program can take is potentially infinite.

Cyclomatic complexity, therefore, only considers the basis paths in a flow graph. That is,

independent linear paths are counted without consideration to how many times or in what

combination those paths may be executed. This counting may be performed by three

methods.

Method 1: The cyclomatic number of a graph G with n vertices, e edges, andp being

the number of unconnected parts of the graph, is computed as:

V(G) = e-n + 2p

Method 2: The cyclomatic number of a graph with ^decision predicates may be

computed as:

V(G) = x + \

26

v
V

Figure 2-1. Program Control Flow Graph

Method 3: The cyclomatic number of a graph may be computed by counting its

regions r.

V(G) = r

In Figure 2-1, n is 7, e is %,p is 1, ^is 2, and r is 3. Therefore:

F(G) = e-« + 2^ = 8-7 + 2-l = 3

F(G) = ;z- + l = 2 + l = 3

F(G) = r = 3

McCabe recommends that in order to have good test coverage and to be maintainable

that programmers keep module complexity V(G) less than 10. Numerous studies have

been conducted that tend to show a good correlation between defect rates and cyclomatic

complexity [McCabe and Butler 1989]. According to Stephen Kan [Kan 1995], studies

have also shown a strong correlation between complexity and program size in LOC.

When program size is controlled, the correlation coefficient tends to weaken. According

27

to Kan, however, this may not be accurate since analysis using Pearson's correlation

coefficient are sensitive to extreme data points and noise. He recommends use of rank-

order correlation coefficients that tend to show a good correlation between complexity

and defect rates even when program size is controlled.

2.3.3.2 Design Complexity

In 1989, McCabe and Butler extended the concept of complexity computation into the

area of design [McCabe and Butler 1989]. McCabe noted that one of the problems with

using cyclomatic complexity based on analysis of existing code was that no predictive

measures could be taken to prevent a module or design from becoming overly complex

and consequently difficult to maintain and test.

McCabe's design complexity measures are based on analysis of a software system's

call structure. The design complexity of a module, defined as iv{G) is determined by

reducing the module's flowgraph such that subgraphs which do not influence the

module's interaction with other modules are eliminated. These reduced module

complexities can then be used to determine the design complexity of a structure chart in

the following manner:

S0=£/v(G,)
ieD

Where D is the set of modules which are descendents of a module M, unioned with M.

The number of integration tests required is then computed as:

S1 =S0-n + l

28

Where S0 is the design complexity for the system, and n is the number of modules in

the system. An example computing iv(G), S0, and Sx is shown in Figure 2-2 taken from

[McCabe and Butler 1989]. Note that a module is conditionally executed if there is a

black dot on the calling module's edge.

2.3.3.3 Complexity Profile Metric

One of the problems, and major criticisms, of using cyclomatic numbers as a measure of

software complexity, is that it produces just a single value to describe a module's

complexity. Fenton especially criticizes this approach since it attempts to quantify, in a

single value, a "poorly understood, but intuitively recognisable attribute." [Fenton 1994]

An alternative proposed by Patricia McQuaid is a fine-grained approach to

computing and visualizing complexity [McQuaid 1996]. McQuaid regards complexity as

psychological in nature. The method defines complexity in terms of a program

statement's content, much like Halstead's effort measurement, and in terms of context

So

^0 -^ So

 ^— sz ^—^
iv iv

Sc
iv

Sl=S0- r.

S,=8-t

Ä=3

Figure 2-2. Design Complexity Example [McCabe89]

29

which is the environment in which the statement occurs. Due to the tedious and lengthy

nature of the discussion of the Profile Metric, the details of its computation will not be

presented here.

What makes the complexity profile metric a particularly interesting measure is that it

is designed to offer users the ability to customize it to their requirements. Users select

appropriate terms and algorithms, and then each statement's complexity is graphed in

histogram form with the vertical axis being complexity and the horizontal axis being the

range of statements. The net effect is that areas of high complexity tend to appear as

"clusters" of complexity and can be evaluated. This crossing of software measurement

with program visualization techniques provides a very powerful capability to users [Cross

etal. 1997]. An example of a complexity profileis shown in Figure 2-3.

rTr CMSP Ci>ö (rtdaSs): [Grasp 1] (text edited)

Orientation Settings Data Sets Scaling

106» Complexity = 10.991753

Spacing seals

N I TTi;

;pc j,'

Conplexity □

Totals

Complexity 8953.6172

200 400 S00 800

Segnent Hunker

1090

Figure 2-3. Complexity Profile Graph [Cross97]

30

2.3.3.4 Object-Oriented Measurement

Previous discussion has largely ignored the paradigm under which the target code was

developed. However, the object-oriented development methodology introduces new

constructs and methods of programming. The following sections discuss proposed

measures for object-oriented software.

CHID AMBER AND KEMERER

Most of the above metrics are designed to deal with traditional, structured-coding

techniques. Chidamber and Kemerer developed a set of six design metrics for projects

using object-oriented development [Chidamber and Kemerer 1994]. These metrics were

developed using, interestingly enough, an ontology from a treatise on philosophy as a

theoretical basis. As a more mathematically formal justification for the measures,

Chidamber and Kemerer also evaluated their metrics against Weyuker's proposed

framework [Weyuker 1988]. The authors also claim to have validated their metrics by

developing tools that were used on site at two companies. Their validation, however, is

not against defect rates, but merely seems to ensure that the measures were indeed

"measured." However, Basili conducted empirical studies of the measures as fault

predictors and found good correlation with the exception of the LCOM measure [Basili et

al. 1996].

31

Weighted Methods Per Class (WMC)

The first metric presented by Chidamber and Kemerer is based on a belief that classes

with large numbers of methods, and/or methods that are complex, require more effort to

develop and maintain. Therefore, the WMC metric is computed by summing the

complexities of the methods in the class:

WMC = Yjci
1=1

Where ci is the complexity of method i. It should be noted that the authors do not

specify the complexity measure to be used, and indicate that any "traditional" static

method may be appropriate.

Depth of Inheritance Tree (DIT)

The next metric is based on the view that the deeper the class is in a hierarchy of classes,

the greater number of methods it will inherit. This increases the design complexity of the

class. DIT is measured by counting the number of classes in the maximum path taken

from the root of the inheritance tree down to (but not including) the subject class.

Number of Children (NOC)

NOC is defined as the number of immediate subclasses that inherit from a class in a class

hierarchy. The idea is that if a class has a large number of immediate children, then it

will have a larger influence on the system's design and will make testing more complex.

That authors also believe that if a class has a large number of children, it may also

32

indicate improper abstraction. It may also simply indicate a greater amount of reuse in

the system.

Coupling Between Object Classes (CBO)

The CBO measures the amount of coupling between object classes. Chidamber and

Kemerer define coupling to be the use of another object's methods or instance variables.

Since this creates dependencies between objects, it is detrimental to modular design,

makes reuse more difficult, and makes testing and maintenance more complex. The CBO

count for a class is defined as the count of classes to which it is coupled.

Response for Class (RFC)

The typical method of communication between classes in an object-oriented system is

through message passing. The basis for the RFC measure is that if a class responds to a

message by calling a large number of methods, it will be more complex and will be more

difficult to test and debug. RFC is defined as:

RFC = \RS\

Where RS is the response set for the class, defined as:

RS = {M}u{Ri}

Where {i?.} is the set of all methods called by method i, and {M} is the set of all

methods in the class. Note that the set of methods called includes methods outside of the

class.

33

Lack of Cohesion Metric (LCOM)

The final metric proposed by Chidamber and Kemerer measures the lack of cohesion in a

class. LCOM is essentially a check of methods against instance variables. If a class's

methods use a lot of common instance variables, then the class has good cohesion. If the

methods tend not to share instance variables, then the class will have low cohesion and

will be more complex.

LCOM is defined by Chidamber and Kemerer in the following manner:

Let a class Chave n methods Ml,M2,...,Mn. Let {/.} be the set of instance variables

used by method M..

There are n such sets {/,},...,{/„}. Let P = {(/„/,) | I, n/. = 0} and

Q = {(/„/,) | /, nlj * 0}. If all n sets {/J,...,^} are 0then let P = 0. LCOM is

then:

LCOM =|p|-|ß|,if|P|>|ß|

= 0 otherwise

A class with a higher LCOM value will therefore have more methods that do not share

instance variables (the Ii n /. =0 term of P). Higher values of LCOM indicate lower

cohesiveness.

LORENZ AND KIDD

Lorenz and Kidd also proposed a set of metrics for object-oriented projects and systems

[Lorenz and Kidd 1994]. The set of metrics proposed appear to be a "grocery list" of

34

measures that can be taken on object-oriented software and there is no formal

justification presented for the measures. They also do not validate the measures in terms

of their ability to predict software quality. Some of the more interesting measures are

discussed in the following sections.

Number of Message Sends (NOM)

Lorenze and Kidd suggest that as an alternative to using LOC to measure the size of a

class method, that the number of messages sent by a method should be counted. The

authors note that hybrid 00 languages such as C++ would have to be carefully counted

since it is possible to have a few message sends surrounded by many lines of non-00

code. The examples presented by the authors show that languages such as Smalltalk

seem to benefit the most from this type of sizing.

Average Number of Instance Methods Per Class (NIMavg)

The NIMavg measure is determined by averaging the count of all the instance methods in

over the number of classes in a software system. Inherited methods are not counted for

purpose of this measure. The intention of taking this measure is that if the value is large,

then it is possible that too much responsibility is being given to the classes.

Specialization Index (SIX)

Lorenze and Kidd suggest several measures relating to how inheritance affects methods

in a class. Generally, these involve counting methods inherited, overridden, etc. The

35

specialization index is a hybrid measure that is supposed to give a sense of the quality of

the subclassing. SIX is defined as:

„TV_NMOxHNL

NCM

Where NMO is the number of methods overridden by a class, HNL is the nesting level

of the class (same as Chidamber and Kemerer's DIT [Chidamber and Kemerer 1994]),

and NCM is total number of class methods.

Average Parameters Per Method (PPMavg)

The authors suggest that increasing the number of parameters required to use a method

in a class increases the complexity of the coupling between classes. PPMavg is defined as

the average number of parameters per method in a class. A high PPMavg indicates that

use of the class will increase overall system complexity.

2.4 PROGRAM COMPREHENSION

Many of the metrics described previously refer to the complexity of the software being

examined. In the case of McCabe, complexity can be defined as the number of test cases

required to fully exercise a software module. More test cases means greater testing

complexity. In most cases, however, complexity in the above metrics tends to refer to

cognitive complexity. Halstead's software science in particular deals with how

programmers are able to capture and manipulate information. Specifically, that there are

limits to how much information can be manipulated, and as the need to manipulate more

information is required, mistakes will be made.

36

This section addresses research into the ability of programmers to comprehend code.

First, a general introduction to some basic research into this area is presented. Next, a

more specific discussion is given on how visualizations of software impact

comprehension.

2.4.1 Models for Program Comprehension

The three main strategeies that have been identified for comprehending software are top-

down, bottom-up, and mixed model. The following sections describe each of these

strategies in terms of the research that was done to identify them.

2.4.1.1 Soloway

The idea that complexity is related to cognitive ability is supported by work conducted by

Soloway, Bonar, and Ehrlich in studying how programmers comprehend looping

constructs [Soloway et al. 1983]. They found that programmers develop preferred

strategies for certain types of loops. Preferred strategies required fewer cognitive

elements to understand, and when programmers deviated from using these simpler

strategies they made more errors.

Soloway later extended the idea of looping strategies into a more general

programming comprehension model of goals and plans [Soloway 1986]. In this model,

the programmer is given a set of requirements for a problem. The programmer mentally

converts these requirements into sets of goals. Goals are broken down into subgoals until

a level is achieved at which a plan can be applied to a goal. A plan is a "canned" solution

37

for a certain type of problem. For example, Soloway offers the following as an example

plan for keeping a running total:

Initialize a running total

Ask user for a value

If input is not the sentinel value, then

Add new value into running total

Loop back to input

This plan is instantiated for the language in use. As programmers develop skills, they

develop a repertoire of plans that they are able to abut, nest, and merge with each other to

solve problems.

Soloway also points out that another way to view goals and plans is to look at plans as

the "mechanisms" that are put into the computer to solve the problem. The goals are then

viewed as the "explanations" as to why the mechanisms exist.

2.4.1.2 Pennington

Pennington proposes that program knowledge is gained in a more bottom-up manner

[Pennington 1987]. In this framework for comprehension, there are two models for

representing knowledge: the program model and the situation model. She found that as

people examine code, good comprehenders will switch between these models and poor

comprehenders will stay with one or the other almost exclusively.

Pennington defines the program model as "a representation that highlights procedural

program relations in the language of programs." The situation model is defined as "a

38

representation that highlights functional relations between program parts that is expressed

in the language of the domain world of objects." In other words, the program model

explains how specific code constructs work, the situation model explains why the code is

there to do that work.

In an empirical study using think aloud techniques, Pennington found that

programmers with poor comprehension tended to either get bogged down in the details of

the code, or would continuously make hypothesis about the overall working of the system

based on code elements. In this respect, they spent most of their time in the program

model or in the situation model, with little crossover. Programmers exhibiting good

comprehension tended to switch between the models without staying exclusively in one

or the other.

2.4.1.3 von Mayrhauser and Vans

von Mayrhauser and Vans studied programmers working with large scale coding projects

[von Mayrhauser and Vans 1994,1996a]. They concluded that program comprehension

involves the integration of four model components into a single framework. Their

integrated code comprehension model includes a top-down domain model, a program

model, a situation model, and a knowledge base. As the authors note, this is basically an

integration of Soloway's top-down approach with Pennington's bottom-up approach.

The top-down model is a general understanding of the system and the problem domain

of the system. Programmers familiar with a type of problem domain will construct a top-

down model of the code. In the example given by von Mayrhauser:

39

"For example, a compiler expert can quickly decompose a new

compiler into major components such as a lexical scanner, a parser, a code

generator, and a code optimizer. Each of these can be further decomposed

into component parts e.g., the parser translates expressions into

subexpressions, terms, and factors."

According to von Mayrhauser and Vans, the program model is used most when a

programmer is new to the code being examined. In this case, domain knowledge is

lacking and cannot explain the purpose of the code or what it is doing. The programmer

will study the code to determine its control flow, trying to answer questions about what

the code is doing. This detailed low-level view of the code is the program model.

The situation model can be seen as a higher-level functional abstraction of the code. It

is developed after the program model is in place. Using a bottom-up approach, the

developer takes portions of the program model and chunks it into a more abstract concept

that fits within the situation model. For example, discovering the implementation of a

hash table (program model) is where the compiler symbol table is stored (situation

model).

von Mayrhauser and Vans found that development of these models can occur in two

ways: systematic or opportunistic. A systematic strategy involves moving methodically

through the code, building program and situation models as progress occurs. Top-down

model development is more opportunistic, where programmers look for clues in the code

40

that point to key elements they know must exist. These key elements are then examined

in detail to fill in the models.

Guiding the development of the models is the use of hypotheses [von Mayrhauser and

Vans 1996b]. As programmers examine the system, they examine features and

hypothesize about their purpose. For example, "Variable iMode appears to be a flag

controlling display behavior." The programmer then uses systematic or opportunistic

searches to verify or reject this hypothesis, switching between the three models as

needed. When verification or rejection is achieved, this knowledge is chunked and

stored.

2.4.1.4 Boehm-Davis, Fox, and Philips

Boehm-Davis, Fox, and Philips favor the bottom-up approach to comprehension [Boehm-

Davis et al. 1996]. Like Soloway, they theorize that as programmers gain expertise, they

develop a stronger repertoire of plans. Like von Mayrhauser and others, they theorize

that programmers segment code into a smaller set of abstractions through an integration

process. Through a process of hypothesizing and segmenting, new knowledge is

integrated into the current understanding of the problem.

Their research focused on attempting to identify the low-level units of code that

programmers identify as part of this process. Experiments conducted using

programmers with a range of skills revealed that unit identification ability increased as

the skill level increased and that the units identified were sensitive to program structure.

41

2.4.2 The Need for Tools

von Mayrhauser and Van make a strong argument for tools that support the cognition

models defined previously [von Mayrhauser and Vans 1993]. They observe that most

tools on the market in 1993 were primarily concerned with supporting only the program

model of comprehension. Others were primarily concerned with the top-down domain

model (CASE tools). The ability to switch between the different models of

comprehension was not commonly supported. While this may seem dated, even as

recently as 1997, Favre noted that commercial tool support for understanding large

software systems is quite limited [Favre 1997].

Storey, Fracchia, and Müller propose a set of cognitive design elements that should be

included in any tool that supports software exploration [Storey et al. 1997]. These

elements are based on the cognitive models described previously. The design element

hierarchy is shown in Figure 2-4.

2.4.2.1 Software Visualization

The general idea behind visualizations of software is that an enhanced or alternate view

of the system's code will assist developers in understanding and manipulating it. For the

purposes of this work, discussion will be limited to two visualization areas of interest:

visualizations of the overall architecture of a system, and visualizations of the a system's

code.

42

Cognitive design
elements

Enhance bottom-up /^

El. Indicate syntactic and
semantic relations between
software objects.

E2. Reduce the effect of
delocalized plans. -/comprehension. <^»

Enhance top-down ^^^*"^

E3. Provide abstraction
mechanisms.

Improve program /

E4. Support goal-directed,
hypothesis-driven
comprehension.

'comprehension \ comprehension. *^^^

\^ Integrate bottom-up ^^^^
\and top-down ^^^

approaches. ^"^-»^^

facilitate navigation. ^r

E5. Provide an adequate
overview of the system
architecture at various levels
of abstraction.

E6. Support the
construction of multiple
mental models.

E7. Cross-reference mental
models.

E8. Provide directional
navigation.

E9. Support arbitrary
navigation.

Provide orientation ^r

E10. Provide navigation
between mental models.

Ell. Indicate the
main tamer's current focus.

^Reduce the rnaintainer's / E12. Display the path that
led to the current focus. cognitive overhead. \ cues. V.

^Reduce disorientation. -^^^

E13. Indicate options for
reaching new nodes.

E14. Reduce additional
effort for user-interface
development.

EIS. Provide effective
presentation styles.

Figure 2-4. Cognitive Design Elements for Software Tools [Storey97]

2.4.2.2 Architecture Visualization

The idea of visualizing the overall architecture of a system is best explained by what

Soloway referred to as explanations and mechanisms [Soloway 1986]. In these terms,

code is seen as the mechanism for accomplishing a task. One sees the structure ofthat

code, however, as explaining why the code exists. When these structures are combined,

43

the domain model is completed, and comprehension is gained as to what the system does.

The following sections offer some methods that have been developed for visualizing

software architecture.

STR UCTURE DIA GRAMS

One of the earliest mechanisms to appear for visualizing the structure of a system was the

structure chart. In its basic form, the structure chart shows a hierarchical representation

of functional entities in the system. The relationships between these entities was in the

form of a procedure call. Later enhancements to structure charts added annotations to the

links between functional entities describing data and control being passed.

In the late 1970's, structured analysis and structured design techniques formalized by

[DeMarco 1979] and [Yourdon and Constantine 1978] led to the introduction of

information flow visualization. In this case, a system is not viewed simply as an

organization of modules calling each other, but instead as a set of processes that

manipulate information flowing between them. Processes are represented by annotated

circles, information flow is represented by annotated arrows between the processes.

OBJECT DIAGRAMS

As object-oriented programming became increasingly popular in the late 1980's, experts

began to look for methods by which analysis and design could be extended to use object-

oriented techniques. James Rumbaugh et al. [Rumbaugh et al. 1991], Grady Booch

[Booch 1994], Peter Coad and Edward Yourdon [Coad and Yourdon 1991a, 1991b]

developed strategies for analyzing and designing software using objects.

44

While techniques vary slightly, a common element amongst all the authors was the

concept of an object diagram which describes an object-oriented software system. The

diagram consists of classes, with connectors between them that describe inheritance, use,

and ownership associations. Rumbaugh et al. and Coad-Yourdon, use squares with

internal annotations to represent classes; relationships are shown with lines between the

classes that have various decorations and annotations to describe their purpose. Booch

uses cloud shapes for classes; relationships are shown with lines between the classes

where a line with an arrow indicates inheritance, lines without arrows indicate has or use

relationships. As with Rumbaugh and Coad-Yourdon, decorations and annotations may

be added to the relationships.

Recently, Rumbaugh and Booch worked together to produce the Unified Modeling

Language (UML) for Rational Corporation [Rational Corp. 1997]. Object diagrams in

UML are essentially a merging of the original diagrams used by Rumbaugh and Booch.

DISTORTION VIEWING

Leung and Apperley point out that one of the problems with viewing large software

systems is the physical size of the display monitor that the programmer uses to work with

the code [Leung 1994]. If a system consists of many thousand functional elements, or

several hundred object classes, then viewing the architecture of the system becomes

difficult. Leung and Apperley looked at a set of methods for solving this problem that

involve distorting the diagrams such that elements of interest are displayed prominently

45

and items of peripheral interest are de-emphasized in the display. Of particular interest in

the taxonomy they present are perspective wall and fisheye views.

The Perspective Wall as described by Mackinlay [Mackinlay et al. 1991] splits the

display into three segments arranged horizontally from left to right across the screen.

The center segment displays a portion of the diagram being examined in a normal or

possibly magnified view. The left and right segments show the peripheral edges of the

diagram in an increasingly demagnified view as the segment approaches the left or right

edge of the screen. The effect is such that it appears the diagram is "receding" as it

approaches the edge of the screen.

Graphical Fisheye Views were presented by Sarkar and Brown [Sarkar and Brown

1994] as an extension of earlier work done by Furnas [Furnas 1986]. Fisheye views get

their name from the camera lens that magnifies the center portion of a picture and

demagnifies it increasingly toward all edges of the picture. Furnas originally proposed

viewing textual information organized in a hierarchical manner using this view concept.

Sarkar and Brown extended this to the field of graphical structures, allowing views of

software architecture to be seen in clarity at the center of the view area, but reducing it

according to a defined mathematical function as elements become farther away from the

view's center.

A novel approach to visualization has been developed by Citrin, Santiago and Zorn in

a tool called VIPR [Citrin et al. 1996]. VIPR represents programs as concentric rings,

where the order of the rings implies flow of control. Groups of concentric rings form

46

functions, and relationships are shown as arrows between them. To allow the display of

large systems, or programs with deep nesting, the rings may be zoomed in or out. Since

code is displayed as rings, there are few edge crossings, making the diagram stay clean as

it is scaled up and down. The authors combine this approach with fisheye views to allow

users to move functions in and out of the focus area, zooming in and out as necessary.

2.4.2.3 Code Visualization

Support for Pennington's concept of the program model [Pennington 1987] is supplied by

visualizing the code itself. The intent is that by supplying a good visualization to support

the program model, that making the connections required to develop an internal situation

model will be easier. The following sections describe techniques that are used to

visualize code.

TEXT FORMATTING

Possibly one of the oldest methods for visualizing code involves arranging the textual

representation so that it conveys meaning to the reader. Indentation of key structures and

manipulation of text color and font are the main methods by which this type of

visualization is done. Termed "pretty printing" by Ledgard [Ledgard 1975], most

modern development environments now include some facility for automatic indentation

and coloring of syntactic elements.

In a study conducted by Miara, Musselman, Navarro, and Shneiderman [Miara et al.

1983] they found that indentation correlated strongly with comprehension. They tested

47

novice and expert programmers using a series of programs with indentation levels of 0, 2,

4, or 6 spaces. Results showed significant improvement in comprehension with

indentation levels of 2 or 4 spaces, especially among novice programmers. At 6 spaces,

however, comprehension fell below that of unindented code.

Tapp and Kazman conducted experiments to determine the effectiveness of color and

font in programming tasks [Tapp and Kazman 1994]. They found that in both

experiments that the use of differing fonts had no significant effect on the outcome of the

programming task as compared to using code with a single font. When color was

introduced, however, they found a significant improvement in the speed at which a task

could be performed. Subjects of the study liked the use of differing fonts, but preferred

the use of color far more.

ABSTRACT CODE VISUALIZATION

An alternate method of constructing the program model is not to view the code itself, but

instead look at a graphic representation of what it is doing. Flowcharts were one of the

earliest tools created for this purpose. Each line code, or grouping of lines with similar

purpose, is represented by a symbol. These symbols include constructs for sequential

computation, input/output, selection, etc. Lines connecting the symbols show the flow of

control through the software.

Nassi and Shneiderman developed a method of diagramming code similar to that of

flowcharting [Nassi and Shneiderman 1973]. In their mechanism, structured

programming techniques are enforced by how the diagram itself is constructed. Nassi-

48

Shneiderman diagrams consist of a tall rectangular block that is segmented from top to

bottom. Control flow moves from the top segment through to the bottom. Segments can

represent sequential statements, conditional statements, or loop constructs. Segments

such as loops wrap around other segments to show containment, and to enforce structure.

Another interesting way to view code was introduced by Eick, Steffen, and Sumner in

the AT&T SeeSoft tool [Eick et al. 1992, Ball et al. 1996]. SeeSoft takes a file and

displays the code in it by representing each line of code as a thin line of graphic pixels.

The net effect is to make it look as if the programmer were seeing an outline of the code.

Additionally, SeeSoft can color each reduced line according to the age of line of code, the

number of changes made to it, the author who wrote the code, etc. When this view is

combined with a normal non-reduced view of the code, it gives the programmer some

contextual clues about what the code's purpose is.

GRASP

In the Graphical Representations of Algorithms, Structures and Processes (GRASP)

research project underway at Auburn University, researchers have sought to develop

practical visualizations of algorithms, structures, and processes for use in solving real-

world software engineering problems [Hendrix et al. 1998]. The GRASP software tool

developed to support this purpose has been supported by NASA, DoD and NSF.

GRASP takes a hybrid approach to code visualization. It combines indentation, color,

and font use with the conceptual advantages provided by abstract views such as

flowcharts. This is done primarily through the use of the Control Structure Diagram

49

(CSD). The CSD overlays program code to show the organization and flow of control

within software modules. Symbology for the CSD is similar to that of a flowchart, with

symbol additions made to show function and package organization. Figure 2-5 shows an

example of an Ada function with the CSD rendered.

Since GRASP is designed to be useful outside the academic setting, the ability to

quickly generate the visualization is considered essential. GRASP is able to generate the

CSD automatically and with very small time and storage overhead (on the order of 5,000

to 10,000 lines per second). Programmers can keep the CSD active without worrying

about it increasing their workload or slowing down the environment.

i package body Search_Methods is
function Binary_Search

(Key : in KeyType;
A : in ArrayType)

return integer is

«» low, middle, high : integer;

begin
 low := A'First;

high := A'Last;
while (low <= high) loop
 middle := (low + high) / 2;

if (Key < A(middle)) then
high := middle - 1;

elsif (Key > A(middle)) then
low := middle + 1;

else
return middle;

- end if;
end loop;

— return 0;
.end Binary_Search;

.end Search Methods ;

(hels

Figure 2-5. CSD Example

50

GRASP appears to provide direct support to Pennington's bottom-up method of

comprehension. It supplies a pre-made abstraction of the program model right next to the

code being examined. In the near future it is expected that further support of this

conceptual model will be added when structural folding is introduced. Folding allows the

user to close ("fold") code that is not of immediate interest to the programmer. For

example, a module could be folded, or an if statement could be folded, or the contents of

a while loop, etc. In essence, as programmers chunk code into the situation model and

program models, they can fold them in the development environment.

Another view of this approach with folding is to consider in terms of a top-down

approach. Here, programmers start with the entire set of code folded. As they take

opportunistic searches through the code, they unfold only those elements of interest.

2.5 DATA COLLECTION IN USABILITY STUDIES

Discovering which elements of a user interface are effective, and which are not has been

an ongoing area of research. As with comprehension studies, techniques usually involve

a combination of direct observation and video taping of subjects. Research into

automated data collection during studies of usability, however, is much further along than

with comprehension studies. Work in this area has progressed from simple

instrumentation and logging to advanced remote agents that selectively filter user input

data. This work is examined in the following sections.

51

2.5.1 Instrumentation and Logging

As user interfaces have become more sophisticated, methods for evaluating them have

improved. In 1991, Siochi and Ehrich used a technique in which a user interface

management system (UIMS) was instrumented so as to write transcripts of user sessions

[Siochi and Ehrich 1991]. This technique had been done before, as they noted in

previous work by Neal and Simons where two computers were connected so that one

could record keystrokes from the other [Neal and Simons 1983]. What Siochi and Ehrich

suggested, however, was that simply recording data is not sufficient. They equated this

to merely another form of videotaping.

Their experiment introduced the idea of automatically analyzing the transcript for

useful data. Specifically, they searched for repetitive patterns of user actions, theorizing

that this would indicate a defect in the UIMS design. Seeing great potential in this

technique, they recommended further work be conducted in broadening automated

analysis and that transcript entries should be enhanced with timestamp information.

A very large usability study was conducted at the University of Sydney using logging

[Kay and Thomas 1995]. In this study, an editing program called "sam" was

instrumented to write a log file of various commands and user activities. This log file

was written to a hidden file in the user's directory and transferred to a central location

automatically each night. A program was then used to analyze the logs for each user.

Kay and Thomas found this technique to work quite well. They studied 2,273

undergraduate students from 1991 to 1993. The method of writing files had a low impact

52

on the system and was resistant to system crashes and network failures. They were able

to successfully use the data to build up long-term trends in how programmers learned to

use the editor.

2.5.2 Distributed Collection and Expectation Agents

As network technology has improved and more locations are tied together using high-

speed networks, the idea of using this technology for distributed collection has been

investigated. In 1995, Bates reported on work he had conducted in debugging technology

[Bates 1995]. His method of data collection relied upon the generation of event

information that was generated as the user worked, and analyzed in real-time by behavior

recognition systems.

Hubert and Redmiles take the idea of event generation and analysis in real-time a step

further [Hubert and Redmiles 1998]. They note that in complex systems the data burden

of recording events such as mouse movements and keystrokes can be tremendous for

large numbers of users. The volume of this data would quickly overload a network if it

were being sent across as it was being created.

Their solution to this problem was to create expectation agents. An expectation agent

can be thought of as the developer's view on how the application being monitored will be

used. When the agent detects that there is a mismatch between the use of the application

and developer expectations, it sends data to the developer for analysis. Called event-

driven expectation monitoring (EDEM), this significantly reduces the network burden.

CHAPTER 3. THE DATA COLLECTION PROBLEM

3.1 INTRODUCTION

Based on the available literature, as discussed in the previous section, there appears to be

a true disconnect between measures of software attributes and measures of program

comprehension. The goal is to establish a relationship between a software measure such

as complexity with comprehension. However, before that goal can be achieved, a first

step must be taken: there must exist methods and tools by which this information can be

collected, represented accurately, stored, and analyzed. The focus of this dissertation has

been to research and solve this collection, representation, storage, and analysis problem.

This chapter discusses the problems that exist in collecting software measures, and

proposes a set of solutions that act as the requirements for the collection framework.

Chapter Four discusses how the framework's design and implementation meets these

requirements.

3.2 CORRELATION OF COMPREHENSION AND SOFTWARE MEASURES

3.2.1 Problem Description

Many of the studies conducted with respect to program comprehension concentrate on

actions taken by the programmers as they look at code. While most consider the

experience and skill levels of the subjects, few consider the complexity of the software

53

54

the comprehension measurements are being taken against, von Mayrhauser and Vans

have concentrated on programmers who deal with large scale systems, but even their

studies simply quote LOC numbers when discussing the complexity of the code. Since

LOC is regarded as a poor measure of software size and complexity, this introduces

another variable into comprehension studies that has largely been ignored.

3.2.2 Proposed Solution

What is required is that not only must measurements of comprehension be taken, but the

software against which these measurements are being taken must also be evaluated. In

order for this to happen, there must exist an underlying framework for collecting this

information and analyzing it. This framework should be capable of collecting the

following types of software measures:

- Size Measures. The system should be capable of collecting basic measures such

as LOC counts, function point counts, and Halstead's Software Science measures.

- Complexity Measures. The system should be capable of collecting McCabe's

cyclomatic complexity number per module, McCabe's design complexity, and

McQuaid's CPG.

- Object-Oriented Measures. In order to account for studies where object-oriented

code is being used, the system should be capable of collecting Chidamber and

Kemerer's suite of measures.

- Other Measures. Other potential measures that may need to be collected include

those proposed as coupling and cohesion measures.

55

3.3 DATA COLLECTION

3.3.1 Problem Description

One of the problems with understanding software comprehension is that the programmer

must be observed in one form or another. This presents a problem since the act of

observing can change the behavior of the subject. Techniques like "thinking aloud"

where the programmer vocalizes their thought processes suffer from similar problems,

requiring researchers to set up extra control groups to ensure the observation process

itself is not having an effect on the experiment.

Direct observation is also a problem when large numbers of subjects are involved.

Extensive work is being conducted at Auburn University designed to determine the

usefulness of visualizations such as the control structure diagram (CSD), complexity

profile graph (CPG), and control structure folding. In order to determine how useful

programmers find these tools, it is desirable to monitor their use patterns. It is not

feasible to do this by observation due to the large number of subjects, often 100 or more,

involved in the studies. In addition, some studies involve allowing the subjects to work

in diverse environments where direct observation is not possible.

In terms of industry use, the personal software process (PSP) developed by Watts

Humphrey requires extensive time measurements in the different development phases

[Humphrey 1997]. This requires use of "diary style" logging of timing data. This type of

collection has been shown to be inaccurate by Dewayne Perry at Bell Laboratories, who

resorted to having personnel physically observe programmers in order to get accurate

56

information [Perry et al. 1994]. Basili also noted that excessive overhead for the

programmer introduces inaccuracies into data and recommended automating as much as

possible [Basili and Weiss 1984]. Since Humphrey's computations depend on accurate

data for predicting productivity, the more accurate this information is, the better the

resulting prediction.

3.3.2 Proposed Solution

Since direct observation, thinking aloud, and diaries have side effects and limitations, the

best alternative is automatic measurement through the development environment itself.

To this purpose, automatic measurements of the following need to be made:

- Session Statistics. The system must record when a user started a session and

when a user finished it. To support PSP, the system will allow the user to specify

what phase they are in (analysis, design, coding, testing) and the system will

record the amount of time spent in that phase. It will allow the user to record

interrupts such as phone calls and personal breaks.

- CSD Usage. The system must count CSD generations, both attempted and

successful. It will measure how long the CSD was active as a percentage of the

session time of the user. Unsuccessful generations will have the error line

recorded.

- Compiler Usage. The system must count the number of compiles, both attempted

and successful. It will record errors and their line numbers.

57

- Folding Usage. The system must record when a folding or unfolding action takes

place. It will record the number of lines folded or unfolded.

- File Usage. The system must record file openings and closings, as well as

recording the amount of time the file was being actively edited.

- Line-Oriented Measures. The system must record when a line in a file was

displayed, when it was added, when it was changed, and when it was deleted.

- User-defined Events. The framework must allow users to manually inject events

containing arbitrary string or numeric data. This will allow PSP users to record

logical errors that cannot be automatically tracked by the environment, and

researchers to record comprehension test scores.

This discussion should not imply that automatic recording of measurements is

necessarily a substitute for direct observation. Studies needing to know the motivation

behind why a programmer took a certain action will have to ask the subject directly.

Automatic measurement can be used in conjunction with these experiments to assist in

analysis of the data and possibly help support conclusions.

3.4 DATA REPRESENTATION

Given that data must be collected as described previously for both software and

comprehension measures, the next problem involves the correct representation ofthat

information. The representation problem can be divided into three parts: how software

measures are represented, how comprehension measures are represented, and how both of

these measures can be represented in a single framework.

58

3.4.1 Problem: Software Measure Representation

One of the problems found by Fenton, Kitchenham, and Pfleeger in their examinations of

the various software measures is that researchers often do not adhere to sound

measurement theory [Fenton and Pfleeger 1997, Kitchenham et al. 1995]. In particular,

they often find the researchers apply inappropriate statistical analysis to measures

because they fail to understand the limitation of the measure's scale type.

Measurement theory defines several scale types [Fenton and Pfleeger 1997]:

- Nominal. The nominal scale is a simple categorization of the measure. There is

no order of magnitude implied for the categories. For example, if one was

measuring defects in a compiler, a nominal scale could be used to indicate where

the defect occurred: preprocessor, lexical analyzer, code generator, optimizer,

etc.

- Ordinal. This scale categorizes the measure, but applies an ordering to the

categories. This is a simple ranking and operations like addition, subtraction, etc.

will have no meaning. An example of an ordinal scale might be the severity of a

defect: low priority, medium priority, high priority. The ordering "less important

than" applies to this order.

- Interval. In this type of scale, there is an order, and the size of the interval

between classifications is known. Addition and subtraction between measures

may be performed, but not multiplication and addition. As Fenton notes, there are

few cases in software engineering where this type of scale is employed. An

59

example of this scale is temperature: it may be 30 degrees Celsius in New York

and 20 degrees Celsius in London. It can be said that New York is 10 degrees

warmer than London, but not that Washington is 50% warmer than London.

- Ratio. The ratio scale has order, defined intervals between classifications, and a

defined starting point representing the lack of a measured attribute (zero). All

arithmetic operations are allowed between measures. An example of this type of

scale would be the size of a software system measured in LOC. If system A has

100 LOC, and system B has 150, it can be said that B has 50% more code than A.

- Absolute. This scale is simply a count of the attribute. In order for this to be

valid, there must be only one way to count the attribute. All mathematical

operations may be applied. An example of this type of scale might be the number

of defects in a system. In this case, it can be said that system A with 10 defects

has twice as many defects as system B with 5. Note that size of a system

measured in LOC is not absolute since size can be measured several ways.

Scale is important in order to avoid making statistical mistakes with information. For

example, it would be incorrect to say that high priority defect A is three times as

important as low priority defect B. Both are measured on an ordinal, not ratio scale.

A more common example would be the use of the cyclomatic number as a mapping to

to integers that defines a software unit's complexity. If one accepts that this mapping

applies to the ordinal scale, then it would be incorrect to say that unit A with a cyclomatic

number of 8 is twice as complex as unit B with cyclomatic number 4. Further, Fenton

60

argues it cannot even be accepted that this is a correct mapping to the ordinal scale since

the "more complex than" relation is not a strict weak order. Basically, because of the

vague definition of complexity, given two programs with differing structure but the same

cyclomatic number, it is unlikely that all programmers would agree that one was more

complex than the other. Given these issues, it is important that scale selection and

measurement manipulation be carefully controlled.

3.4.2 Problem: Comprehension Measure Representation

Software measures are generally static in nature. For example, to count the LOC of a

program as a measure of size, this would be done after the program has been written, not

during its construction. Similarly, if to measure the complexity of a program, one would

do this as a "snapshot" of the software at a given point in time.

Software comprehension measurements, however, often have a dynamic aspect.

While it is normal to have a comprehension exam after an experiment, it is very common

to have measurements being taken during the experiment. For example, using the think

aloud technique, programmers describe their actions as they examine software.

Observers record these comments for later analysis. The order in which the comments

are made is important and must be preserved. Because of this, time becomes a factor in

the unit selection for measurements.

61

3.4.3 Problem: Measure Integration

If it is necessary to record both software and comprehension measures, then selection of

scale and units can be a problem. The time order of the comprehension measurements

must be preserved and software measures must be taken so they can be correlated with

the comprehension measurements. For example, it may be noted that one hour into the

experiment, a programmer started a compile that ended with five errors. At one hour

thirty minutes, the programmer starts a compile that ends with two errors. At two hours,

the programmer starts a compile that ends with no errors. Although one may want to

know the cyclomatic number of the programmer's code, until a successful compile is

achieved it cannot be collected automatically. It is possible, however, to take

comprehension measurements. A collection framework must be able to represent both

types of measurements so they can be correlated.

3.4.4 Proposed Solution

In order to solve the above three main problems, the idea of recording information in

summary form is discarded. Instead, information is recorded as a series of events. Each

event has an inherent time associated with it. After events are recorded and the session is

complete, the data can then be analyzed. Since time information will be preserved, it is

possible to recreate the session by simply looking at the sequence of the events.

Additionally, by storing detailed event information, the problems with retaining the

proper data representation are minimized. The framework cannot enforce a scale per se,

but it can offer the data in such a manner as to encourage the proper use of the scale.

62

Integration with software measurement data is not an issue. Software measurements

are considered events and stored as such. The time component can be used to determine

what the most current measurement of the software is, and to look at the change in the

characteristics of the software over time.

3.5 DATA STORAGE AND ANALYSIS

3.5.1 Problem Description

There is a compelling interest for commercial users of software measures to track

information over a period of time [Grady and Caswell 1987, Ross 1987]. This history

provides managers and programmers the ability to predict how long a future project may

take based on historical performance. It provides feedback for companies attempting to

improve their development processes. For researchers, it may take several studies to

validate a theory pertaining to software measurement, comprehension, or both.

3.5.2 Proposed Solution

To meet the needs of industry and research, the measures need to be stored in a database.

This requires the design of a database system that can represent information as discussed

in Section 3.4. In order to maintain maximum flexibility, the system cannot tie itself to a

single vendor's database, but should be able to work with any database capable of

accepting ANSI SQL 1992 data manipulation language and data definition language

commands.

63

Further, the system must be able to save information offline from the database when

necessary. It can be anticipated that some measurements will be taken on machines that

are not tied directly to the database management system, and so these measurements will

need to be placed in a file. This file can then later be imported into a database for

analysis.

CHAPTER 4. THE DATA COLLECTION FRAMEWORK

4.1 INTRODUCTION

Chapter 3 defined the problems associated with collecting measurement information

properly and proposed general solutions to those problems through the creation of a data

collection framework. In this chapter, the mathematical basis of the collection

framework is discussed, followed by a detailed examination of its design and

implementation. A sample analysis package developed to assist in using the framework

is also presented. Chapter 5 discusses how this framework was tested by integration with

an actual development environment.

4.2 THE FRAMEWORK CONCEPTUAL MODEL

The goal of the framework is to develop a representation for user actions and software

state that is a useful basis for analysis. There are a finite number of possible user actions

within a development environment. These actions include activity such as opening a file,

moving the cursor, performing a compile, etc. The finite set Sa is defined to contain

elements representing these actions. The setiS^ is defined to be the set of all possible

states of the software being operated upon. Since the possibility of external modification

is allowed, this set of states is infinite.

64

65

User Session

Figure 4-1. Conceptual Model for the Framework

In order to provide correlation between these two types of data, the cartesian product

of the sets is taken: Sc = SaxSb. Then Sc contains tuples of the form < x, y > where

xe Sa, andy e Sb where y is a set of tuples that describe the state of the software in terms

of its size and structure.

The final step is to create a time-ordered set of action-state tuples. The set 5^ is

defined to be a set of tuples of the form< t,z > where t e N (time in natural numbered

units) and z e Sc. The user session then becomes a relation Re between Sc and Sd such

that elements are selected from Sc for inclusion into Sd as part of the editing process. The

purpose of the framework is to capture Re so that the set^ can be constructed as needed

for analysis. The model is shown in Figure 4-1.

66

Determining the amount of editing time a file has had during a session is an an

example of the use of this type of correlation. We take pairs of tuples < Xy,y(j > from

Sd where xtj e (file activation i on filey) and ytj e (corresponding file deactivation i on

file,/). Then the total file activity is:

Another example is the computation of program development times in PSP. In this

case, one computes LOC per minute as:

Rate =
(LOC5tart-LOCend)

But this shows little about variation in rates over the period of development. Using

the information in the set Sd the mean LOC can be computed as:

«-1

X = — where yrA is the LOC at interval i.
n

Standard deviation is then computed as:

B-l

miy^A-y^-Xf
s = ■■ '=1

If development rates in terms of LOC vary significantly over the period of

measurement, then the standard deviation will be large. This will signal to the person

performing the analysis that growth of the code was not linear, and this data may not be

useful for predicting the growth of future projects which exhibit linear growth.

67

The following sections discuss how the mathematical model was translated into

computer software via object-oriented design and programming techniques.

4.3 DEVELOPMENT METHODOLOGY

There are two main alternatives for software development: structured and object-oriented.

While there is a justification for using structured techniques because of the data

manipulation involved, which lends itself to data-flow diagramming, the method selected

was object-oriented analysis, design, and programming for the following reason. The

development community is almost universally accepting object-oriented techniques as the

proper methodology, so it is probable that environments to which the framework will link

will be object-oriented.

The following sections outline the basics of the object-oriented development process,

and briefly discuss how these impacted decisions made in creating the framework.

4.3.1 Object-Oriented Analysis (00A)

During the analysis phase of development, the problem statement is refined so that

solutions can be designed and implemented. In OOA, this is done by examining the

problem and identifying objects and their relationships with each other. An object can be

thought of as something that has state, defined behavior, and identity [Booch 1994,

Rumbaugh et al. 1991]. For example, a car might be considered to be an object in a

traffic simulation. It has a state: speed, fuel level, color, etc. It has behavior: accelerate,

68

turn, brake, etc. It has an identity in that this car can be distinguished from other cars by

its license plate.

In the terms of a framework, the definition of an object can be less clear since it is not

a real world object. As will be presented later in the discussion of the architecture, the

defined objects are conceptual. For example, the file manager is an object that has state:

the file being manipulated. It has behavior: read events from files, write events to files.

It has identity in that each instantiation of the framework has one unique file manager it

uses.

The output of OOA is a set of class diagrams that show the relationships between

objects, a set of interaction diagrams that show how objects interact with each other, and

state-transition diagrams that show how objects change as they operate.

4.3.2 Object-Oriented Design (OOD)

During design the set of objects is organized into systems and subsystems. Each object is

examined and refined to determine its specific state factors, operations, and relationships

with other objects. The class structure defined in OOA is optimized and expanded as

necessary to give a robust definition of each object, class of objects, system utilization,

and system utilities required.

4.3.3 Object-Oriented Programming (OOP)

The act of translating the design into a program which uses objects and operates on them

as specified is object-oriented programming. It is not necessary to have a language that

69

explicitly supports OOA/OOD to implement the constructs of inheritance and

polymorphism that OOA/OOD uses when defining object classes. However, languages

such as C++ and Java have explicit support for these constructs and this tends to

eliminate a lot of extra code. As will be discussed later, the framework uses the

programming language Java because of the ease of implementing the object-oriented

design, and to maximize the portability across platforms.

4.4 ARCHITECTURE

The first task in creating a software implementation of the conceptual model is deciding

the best manner to represent the sets Sa, Sb, Sc and Sd. Further, it is necessary to more

precisely define the contents of an element v in set Sb. Finally, a mechanism for

capturing the selections of elements from Sc into Sd must be designed.

Some basic organizational decisions have to be made as part of developing a

representation, since there are two major ways to implement the model. In the first, code

is written into each development environment giving them the ability to write data to

some media, and then separate applications are written that read the data. This has a

severe disadvantage in that a lot of code will have to be written into an application to

support the handling of the data. This same code will be repeated in the analysis

application which has to examine it. Additionally, if new environments are developed,

the same code has to be embedded again. This unnecessarily complicates the software.

The second and more practical way to implement the solutions is via a loosely coupled

framework of objects. "Framework" in this sense refers to a set of objects that work

70

together through a defined set of dependencies and interaction rules. A user of the

framework inserts their objects into it in such a manner as to obey the dependencies and

interactions. In this section, the mapping of the conceptual model to an object-oriented

framework is described, and the rules for the framework are specified.

4.4.1 Set Representation

In order to allow the framework to work with a variety of applications, it is essential that

the representation selected for the sets not be rigid. It is understood that as the

framework is used for new applications, or old applications gain new features, that the

contents of the sets will necessarily change. Therefore, what will be established here is a

pattern for the sets, rather than a unique enumeration of their content.

The first set examined is Sa, which is defined as the set of all possible user actions in

a given application. Similar to the notation used by [Bates 1995], a tuple of this set can

be seen as the following general template:

(actionjiame, ax, a2,..., an)

Where actionjiame is the action being taken, and a1,a2,...,an are the attributes

associated with that action. Examples of specific actions would then look like:

(file_open, file _ name, window _ handle)

(enterjine, window _ handle, line _ number)

(CSD_generate, window _ handle)

71

The set Sb holds all possible states of the software being manipulated through the

development application. It is defined in a similar manner as Sa:

(sw_name,^,&2,.-A)

Where sw_name is aunique identifier for the software element, and bl,b1,...,bn are

attributes that describe the software's state. State tuples would then look like the

following examples:

(window_handle, physical _ LOC, logical _ LOC, cyclomatic _ complexity)

(window_handle, classes, methods, associations)

(file_name, size _ in _ bytes)

Note that swjiame is unique to the application. Some applications may identify

software elements by filenames, others may use operating system file descriptors, or in

the case of pcGRASP, unique integers called "handles."

As noted in the discussion on the conceptual model, Sc is the cartesian product of Sa

and Sb which gives us the set of all possible actions on all possible states. Since tuples

are of the form < x,y >, then our representation becomes:

(action_name,a1,a2,...,öI,sw_name,ö1,ö2,...,ö;)

Possible state/action pairs in this set might be:

(file_open, file _ name, windowjiandle, physical _ LOC, logical _ LOC, complexity)

(file_compiIe, errors, filejiame, size _ in _ bytes)

72

As the user works in the development environment, different actions will be taken, and

the state of the software will change. The work occurs in a specific order, and this order

is represented by the set Sd which adds the element of time. So the representation of this

set is then:

(t, actionjiame.aj,*^,..., an sw_name,&,,Z>2,...,&,)

Where t is the time at which the action took place. Since this representation combines

the action/state with a time, it is referred to as an "event." The purpose of the framework

is to collect and store events as represented above. The following sections describe in

greater detail how this representation is converted to an object-oriented design.

4.4.2 Overall Architecture

The architecture of any system of software which uses the framework will have three

major components, as shown in Figure 4-2. The development environment is created by

Development
Environment

Events
Data Collection

Framework

Events

>

Events
/\

\7

Database

Figure 4-2. Framework Architecture

Analyzer

Figure 4-3. Software Package Dependencies in the
Framework

the user of the framework. It communicates with the components of the data collection

framework by passing events for storage. The data collection framework organizes and

stores these events to files on disk. The analysis tool uses the framework to retrieve and

manipulate events.

Figure 4-3 shows the packages and dependencies in the system. The development

environment, marked IDE (a common industry acronym for integrated development

environment) in the figure, uses utilities and event definitions in the framework and

events packages. The events package simply defines all the possible events that can be

recorded. The IDE creates instances of these events, such as a user compiling a file, and

passes it to an interface component in the framework package for storage. The analyzer

package uses the framework package to get events from the database, and uses the events

package to allow manipulation of the events.

74

4.4.3 The Event Hierarchy

Information regarding what is going on within the IDE is stored as events. As per the

model discussed earlier, an event is a tuple from Sd which describes a specific action

taken on software in a specific state, at a specific point in time. In that set, each tuple is

represented as:

(t, action_name, ax, a2,..., a., name,^ ,b2,...,bj)

Each event is considered to be an object which must be stored by the framework.

Therefore, an appropriate class is defined for each possible event. The representation

above is mapped to a class structure as shown in Figure 4-4. The event is only triggered

when a user takes an action, therefore the event is named after that action. The event

contains a matching attribute for every attribute of a tuple in Sd, plus an integer

representing the time at which the event occurred.

From a mathematical perspective, this conversion to object classes preserves all

information and is correct. From an implementation perspective, however, it is too

inefficient to actually store data in this manner. First, there is a large set of actions that

will not change the state of the software. For example, moving the cursor, opening a file,

closing a file, saving a file, etc. These actions do not actually alter the software being

manipulated in the environment. Therefore, if the user moves the cursor repeatedly

without changing the underlying software, then state data is repeated needlessly.

75

class action_name:
time t

attribute ax

attribute a.

attribute ai

attribute sw_name

attribute ft,

attribute b2

attribute 6.

(a)

class file_open:
Integer time

String file_name

Handle swname

Integer logical_LOC

Integer physical_LOC

Integer complexity

(b)

Figure 4-4. Generic Class from Event (a) and Example (b)

Another problem is the difficulty in assessing the state of the software. Measures of

software state such as computing logical lines of code, determining cyclomatic

complexity, or calculating the complexity profile require a complete parse of the

software. This can be very time consuming, and would probably interfere with the

programmer's task if this were done at every keystroke.

To solve this, the representation of events in Sd is changed in the conversion to object

classes such that state information is preserved, but repeated data is reduced. This is

done by treating the generation of software state data as an action event. The

representation of a tuple then becomes:

(/, actionjiame,a,, a2,...,an)

76

Action Events State Data
(l,Compute State,0,100,30,5) (PhysLOC = = 100, LogLOC = 30, Ccmp = = 5)
(5,Enter_Line,0,100) (PhysLOC = = 100, LogLOC = 30, Comp = = 5)
(6,Enter_Line,0,101) (PhysLOC = = 100, LogLOC = 30, Comp = = 5)
(7,Insert_Line,0,101) (PhysLOC = = 100, LogLOC = 30, Comp = = 5)
(8,Compute State,101,30,5) (PhysLOC = = 101, LogLOC = 30, Comp = = 5)
(10, Close File,0) (PhysLOC = = 101, LogLOC = 30, Comp = = 5)

Figure 4-5. Example of Modified State Representation

Where action_name can now include a set of actions that cause the associated attributes

to be loaded with state information. Examining Figure 4-5 one can see that this new

representation does not result in information loss. As the user performs various actions,

the last state computation event's data is used to fill in knowledge of the software state.

So long as a state computation event occurs each time the software changes, the

information will be current. Note that state data for an event is defined to be the state of

the software at the time the action is taken, and should not be considered the state of the

software after the action is taken.

Using this representation also allows the framework to store estimates of the software

state. That is, if computation of the software state is expensive in terms of time, then the

application performs fewer state computations. The framework simply uses the last

computation recorded, even though it may not be entirely correct due to user changes.

In the following sections, the object classes are further refined and mapped to object

classes.

77

4.4.3.1 The Root Class: CFEvent

The process of examining possible actions and software states for representation reveals

that many share common attributes. By examining these common attributes, an

inheritence structure can be established. For example, the following tuples both share a

common attribute, window_handle:

(t, file_open,yz/e _ name, window _ handle)

(t, file_close, window _ handle)

This commonality, if repeated among many tuples would suggest the presence of a

more general abstract category of window or file event. Repeated examination of action

events does tend to reveal these kinds of relationships, and an inheritance hierarchy was

constructed from them.

The class CFEvent is the root class of the inheritance structure. Figure 4-6 shows this

class and its immediate child classes. It records the time the event occurred, a unique

CFEvtSessionStart

CFEvtSessionEnd

CFEvent

mjimestamp: Timestamp
m_session : int
m eventID: int

CFEvtlnterruptOn

CFEvtlnterruptOff

Figure 4-6. Root and Session Events

78

session identifier that the event occurred in, and a unique identifier for this event.

Subclasses add to this information depending on what kind of action they are recording.

Thus, the CFEvent class can be seen as a tuple of the following form in Sd :

(t, CFE\ien[,session, eventID)

Where session is an integer that uniquely identifies this session from all other user

sessions. As discussed earlier, the user's session acts as a relation Re from Sc to Sd, this

identifier allows the framework to store several of these relations in one dataset while still

being able to distinguish between them. It can also be thought of as a way to distinguish

one set Sd from another in a dataset consisting of multiple instances of these sets.

Within the framework, all events are handled using this base class to the maximum

extent possible. For example, if the analysis tool requests a set of events matching

certain criteria, the set will always be returned as a collection of CFEvent objects. The

analysis tool can then look at each event as necessary to discover what kind of

specialization of CFEvent it is.

4.4.3.2 Session Events

The child classes of CFEvent are known as session events. These events record

information that is unique to a specific session. A major abstract class of these events,

CFWindowEvent, operates on a specific window in the environment, and forms its own

subtree in the hierarchy. The other events which can be instantiated operate outside the

79

bounds of a specific window or file. Events which can be instantiated always have the

prefix "CFEvt" in their name.

There are three main types of session events:

- Session Control. The CFEvtSessionStart and CFEvtSessionEnd events put

boundaries on when the session began and terminated. This allows an analysis

tool to watch for these events and by taking the difference in their timestamp

values, can learn how long the session lasted.

- Personal Software Process (PSP). The CFEvtPhase event records what phase of

development the user has entered. CFEvtlnterruptOn and CFEvtlnterruptOff

allow the programmer to signal when they have been interrupted from work by

phone calls, personal breaks, etc. These events allow an analysis tool to

determine how long was spent in any given phase of development.

- Window Events. This is a class of events that occur within a single session, but

are applicable to a specific file or window in the environment. Note that a

"window" does not imply a source file, it may be a window containing a structure

diagram, symbol browser, debugger, etc.

4.4.3.3 Window Events

The most common type of event is the window event. This event will record a specific

action taken by a user, and associate that action with a window in the development

environment. As noted previously, a "window" does not always mean a source file. The

idea of this class of events is not to put a strict interpretation on what kind of content the

80

CFEvtFileOpen

CFEvtFileClose

CFEvtFileNew

CFEvtFileSave

CFEvtFileActive

CFEvtFilelnactive

CFEvent

CFWindowEvent

CFEvtExecute

CFEvtGood Compile

CFEvtBadCompile

CFEvtCSDOff

CFEvtCSDGoodGen

CFEvtCSDBadGen

CFEvtMetricsReport

CFEvtCSDOn

Figure 4-7. Window Events

window may contain. By not assuming it is a source file, one can add events that inherit

from this class without unduly deepening the inheritance tree and complicating the

design.

Figure 4-7 shows the current set of window events. Currently, they are all oriented

toward a source file being in the window. If something other than a source file were

there, new events oriented toward that content would be added instead.

The window events can be organized into several major groups:

- File I/O. CFEvtFileOpen, CFEvtFileClose, CFEvtFileNew, and CFEvtFileSave

all indicate the user took actions which involved reading or writing data from

81

permanent storage. When a file is created using CFEvtFileNew it does not have a

filename. The final filename for the window will be assigned when a

CFEvtFileSave is performed. Note that CFEvtFileOpen and CFEvtFileClose have

an associated filename.

File Usage. The CFEvtFileActive and CFEvtFilelnactive events are used to

record which window was active at any given time, if any. When a window is

highlighted in the user environment, it becomes active and a CFEvtFileActive

event is recorded. When another window or application is highlighted, a

CFEvtFilelnactive event is recorded. By summing the active periods, an analysis

tool can determine how long a user was looking at a specific window in the

environment.

Compiles. CFEvtGoodCompile indicates the user compiled a source file in this

window, and the compile was successful. CFEvtBadCompile indicates an

unsuccessful compile occurred, and stores the number of errors that occurred.

Execution. CFEvtExecute is used to record each time a user executed a specific

file.

Metrics. CFEvtMetricsReport records a logical and physical line count of items

in the file, it can also store other file-oriented metrics such as cyclomatic

complexity.

CSD Events. This group of events is specific to the GRASP project.

CFEvtCSDGoodGen records that the programmer manually generated a CSD

82

successfully. CFEvtCSDBadGen indicates the CSD generation was not

successful, and records the text of the error message. CFEvtCSDOn indicates the

environment generated a CSD automatically. CFEvtCSDOff indicates the

programmer removed the CSD diagram from the window.

- Line Events. This class of events assumes a source file is in the window, and has

specific events to record operations on the lines of the file.

4.4.3.4 Line Events

Line events are a subclass of window events. Line events assume there is a source file in

the window, and they record a fine-grained level of detail about the operations on the

lines of code. Figure 4-8 shows the current set of line events. CFEvtEnterLine indicates

CFEvtAlterLine

CFEvtEnterLine

CFEvent

~7T
CFWindowEvent

TV

CFLineEvent

CFEvtExitLine

CFEvtlnsertLine

CFEvtDeleteLine

Figure 4-8. Line Events

83

that a line has been entered by the user placing the edit cursor on it. CFEvtAlterLine

indicates that the line was changed by the user through the modification of its text.

CFEvtlnsertLine indicates that one or more lines were inserted before the current line.

CFEvtDeleteLine indicates that one or more lines were deleted, starting with the current

line.

By examining these events, an analysis tool can determine not just what file was most

active (via the window events described earlier), but what specific part ofthat file was

most active in terms of user activity. This can help managers determine what areas of

code may be absorbing most of a team's time. It can be used by researchers to help

correlate fine-grained complexity metrics with actual editing time by programmers.

4.4.3.5 Expanding the Hierarchy

It is anticipated that different environments will have unique events they want to capture.

The intent of the framework is not to create a rigid set of events that cannot be changed.

Instead, it is expected that more events will be added.

If an event in the framework does not precisely meet the needs of the application, then

a similar event should be subclassed and overridden as necessary. Doing this will ensure

that the core components still work correctly, and that the framework will continue to

work with other applications that expect the original set of events.

If there is no similar event, then the event should be added to the tree at the

appropriate level of specialization underneath CFEvent.

Sends Event To

84

Reads Events For

Figure 4-9. Framework Classes

4.4.4 The Core Framework Components

Information from the IDE is recorded by generating events. The events, in turn, are

passed to a set of core framework components that put them to a more permanent form of

storage. There are two basic configurations that the core components can take. In the

first, they receive events from the IDE and store them to a disk file. This disk file is later

read by a component which stores the events into a database. In the second mode, the

events are queried from the database by the analysis tool. Figure 4-9 shows the core

components and their relationships to each other.

Looking at the first mode, an IDE wishing to store events it has created, there are two

core components that are used: CFInterface and CFFileManager. The IDE constructs an

instance of CFInterface and then passes all events to it. CFInterface creates an instance

of CFFileManager and uses this to store the events to a file. This file can later be read by

a CFDatabaseManager instance and stored into a database.

85

While CFInterface could send events directly to CFDatabaseManager for storage, this

can cause problems. First, if the system is hosted on an unstable network, the connection

between the IDE and the database could be lost, resulting in a loss of data or the

complication of the software by requiring extensive error-recovery procedures. Further,

on a network of personal computers, it is possible the user may power off the computer

rather than exit the program normally, resulting in a non-terminated session. The next

problem can occur when considering the likely possibility that users will want to work at

home, away from the network. This disallows a direct connection to the database and

events must be stored in files.

In the second mode of operation, the core components are used by an analysis tool to

extract data from the database. In this mode, the analysis tool constructs an instance of

CFDatabaseManager and uses it to access the events. The database and its structure are

hidden from the analysis tool through a set of application program interfaces (API) that

the core framework components supply. This API is detailed in Appendix I. CFInterface

is not used in this mode, and CFFileManager is only used if the analysis tool is also

controlling the merging of event files into the database. The demonstration tool created

for this dissertation works in this manner.

4.4.4.1 Application Interface (CFInterface)

The IDE uses the framework through a single interface class, CFInterface. The IDE

creates an instance of this class and has it open an event file for writing. An event file

may either be created, or it may be an existing event file in which case events are

86

appended to it. The IDE then creates instances of events and passes these events to the

CFInterface object which performs any processing needed to get them written to disk.

CFInterface itself contains operations to open, create, and close event files. Other

operations process the various events. The operations that process the CFEvtFileOpen

and CFEvtFileNew events return a window handle that is used by subsequent window

events to indicate what window in the environment they are operating on.

4.4.4.2 File Manager (CFFileManager)

The CFFileManager class has the responsibility of handling all operations dealing with

event files. It is not used directly either by an IDE or by an analysis tool. It is a utility

class used by CFInterface and CFDatabaseManager. It contains operations to create new

event files, open existing event files to append events to them, and open event files to

read events from them.

It is anticipated that the file manager could exist in a networked environment and act

as a process on a server. In this role, it would need to be able to handle multiple,

simultaneous file requests. To support this, the object returns a file handle from all of its

file open and creation functions. This file handle is used by CFInterface to tell the file

manager what file to write to when an event is appended. It also performs the same

identification role when CFDatabaseManager requests an event.

CFFileManager has a single operation appendEvent for writing events to a file. It has

a single operation getNextEvent which reads an event from an opened file. The

getNextEvent operation returns a complete, instantiated event to the database manager.

87

The idea is to insulate CFInterface and CFDatabaseManager from the mechanics of how

the file is read or written.

4.4.4.3 Database Manager (CFDatabaseManager)

The database manager has several roles. First, it must implement a method of storing

events so that they can be pulled from the database in a variety of organizations. There

are two operations for querying events: get events by user, and get events by session.

Leaving the user identification empty retrieves a list of all events. However, since there

is a strong possibility other organizations of the data may be needed, the database cannot

be coded solely to meet these two operations. For this reason, it was decided that the

CFDatabaseManager object would encapsulate a more general-purpose database and

perform data conversions on the events to store and retrieve them from it.

The next major role of the database manager is to read event files and import the

events into the database. To perform this, the CFDatabaseManager object instantiates an

instance of CFFileManager and has it read an event file specified by the user. Events are

extracted from the event file, examined for special processing by the database manager,

and then inserted into the database. Some events require special processing because they

contain information that needs to be stored separately. For example, as new users are

discovered via CFEvtSessionStart events (which contain a user ID), there is a separate

database structure that needs to be updated to add this user.

The handling of file-oriented events is particularly tricky. As indicated earlier,

information is being recorded on an individual basis, not in a networked mode. Because

88

of this, when a user opens a new file and CFInterface returns a file handle to the user, that

file handle is unique only to that particular session. It is not globally unique among

sessions or among the community of users who may be putting events into the database.

In order to uniquely identify the file being operated upon, the database manager replaces

all local file handles with unique global handles when it reads in session events.

The final role of the database manager is to offer access to the underlying database

system to the analysis tool. This access is to allow the tool to create database structures it

may need to perform its job. The intent is that these structures would be unique and

separate from the structures used by CFDatabaseManager. For example, in the analysis

tool developed for this dissertation a separate table was needed to hold information about

the state of charts and graphs being shown.

4.4.5 Database Design

One of the goals of the framework was to support tools that would allow managers to

access a historical database of project information. In selecting the model of database to

be used, one of the key decisions made was to use the relational model. This was done

because of the large number of inexpensive relational database management systems

(RDBMS) available, and the excellent support among object-oriented languages for

Structured Query Language (SQL).

This choice has a drawback compared to using an object-oriented database however.

Each event has to be converted by CFDatabaseManager into a tuple that is stored in a

database relation. Extracting events means converting a tuple back into the internal event

89

object format. This required adding operations to events that caused them to convert

their data back and forth as needed.

Figure 4-10 shows the structure of the database. The following sections describe the

relations in the database.

4.4.5.1 Events Relation

This relation is composed of tuples that represent events. One tuple is one event. The

fields within the tuple have the following meaning:

Sessions

*SessionlD: int
UserlD: char(30)
StartTimestamp: long

1

Users

*UserlD: char(30)
Description : char(100)

ClassMetrics

1..*

Events

*EventlD : int
SessionID: int
Timestamp: long
Window: int
EventType: int
charFieldl : char(100)
intFieldl : int
intField2: int
intField3: int

"EventlD: int
PackageName:
char(100)
ClassName: char(100)
LogicalLOC: int

MethodMetrics

*EventlD: int
PackageName: char(100)
ClassName: char(100)
MethodName: char(100)
LogicalLOC: int
PhysicalLOC: int

Files
*FilelD: int
FileName: char(100)

FileMetrics

*EventlD : int
FilelD: int
Language: int
LogicalLOC: int
PhysicalLOC: int

Figure 4-10. Database Relations

90

- EventID (primary key). This is an integer value assigned to the event by the

database manager.

- SessionlD. This field identifies which session the event belongs to and is used to

access information in the Sessions relation.

- Timestamp. A long value which represents the time at which the event occurred.

This value is stored as milliseconds since Jan 1st, 1970 (a typical epoch for date

values).

- Window. A unique integer value that identifies what window or file the event

occurred in.

- EventType. A value that tells the database manager what type of event is stored in

the tuple. It uses this value when reconstructing events so that it knows what kind

of object to instantiate.

- charFieldl, intFieldl, intField2, intField3. These fields store information unique

to the kind of event specified by the field EventType. For example, an

unsuccessful CSD generation stores the error text in charFieldl while a file open

event stores the filename in charFieldl.

The Events relation follows the representation pattern for tuples of Sd discussed in

Section 4.4.3. The pattern there was:

(^ actionjiame.a!, a2,..., a„)

With the Events relation there is:

(Timestamp, EventType, EventID, SessionlD,.. .,intField3)

91

As new attributes are required, the Events relation can be expanded with more

attributes while still continuing to keep the basis of the framework's event design.

4.4.5.2 Sessions Relation

Each event must belong to exactly one session. A session may be composed of many

events. The fields within each tuple of the Sessions relation have the following meaning:

- SessionID (primary key). An integer value assigned by the database manager that

uniquely identifies this session.

- UserlD. Each session is associated with one user. This field uniquely identifies

the user and is used to access their information in the Users relation.

- StartTimestamp, EndTimestamp. These fields record when the session started and

ended. While this information can be discovered by analyzing the events

associated with this session, it is such a common task that it is precomputed and

stored here to save time.

4.4.5.3 Users Relation

Every session is associated with a user. A user may have many sessions. The fields

within the Users relation have the following meaning:

- UserlD (primary key). A character field that uniquely identifies the user. This

must be supplied in the CFEvtSessionStart event, or as a parameter passed to the

CFDatabaseManager when an event file is imported into the database.

- Description. A character field that holds a description of who this user is.

92

4.4.5.4 Files Relation

As noted previously, when users operate on files the CFInterface object assigns local file

handles for identifying them. When they are imported into the database, however, it is

critical that there are no conflicts with duplicate file handles. Therefore, the database

manager uses the Files relation to track what files (or windows) have been used, and

assigns each a unique handle. The association between a global file handle/local file

name is made in this relation.

The fields have the following meaning:

- FilelD (primary key). An integer value assigned by the database manager that

uniquely identifies this file or window. If the event contained a local file handle

stored in the events, window field, it is replaced with this value.

- FileName. The name of the file as stored on the local computer system.

4.4.5.5 Metrics Relations

The relations FileMetrics, ClassMetrics, and MethodMetrics are used in conjunction with

the CFEvtMetricsReport event. They store metrics computed for the file as a whole, the

class, and each method in the class. Because they are intended to work for a variety of

languages, it was decided not to assume that files contained classes and classes contained

methods. Instead, it is possible to have a metrics report on a file which will insert a tuple

into FileMetrics, not have any classes (in the case of the C language), but have several

method metrics inserted into MethodMetrics. Because of these potential language

differences, not all fields may be used in each relation's tuple.

93

Metric tuples are keyed upon the CFEvtMetricsReport event that created them. So a

single event may have no metrics associated with it, or if it is a CFEvtMetricsReport

event it will have many metrics tuples associated with it.

4.5 IMPLEMENTATION

Section 4.4 discussed the architecture of the system and described the components and

their relationships, but avoided discussion of specific implementation of the relationships

or operations. In this section, the framework architecture implementation is discussed.

4.5.1 Language Selection

Selecting a programming language to implement the framework in was a key task. The

language candidates had to be considered under the following criteria:

- Object-Oriented Support. Object-oriented programming can be performed in

most procedural languages. If the language is not inherently object-oriented, then

the key concepts of classes, inheritance, and polymorphism have to be simulated

through data structures, hierarchy flattening, and large case structures. If the

language has built-in constructs to support classes, inheritance, and

polymorphism, then the amount of code required is reduced.

- Portability. It was important that the language be available on multiple platforms,

and that code written in that language work on different platforms without code

change. This requirement stems from the expectation that experiments and

industrial use will occur both in Microsoft Windows and Unix environments.

94

- Database Support. The framework needs a relational database for persistent

storage of events. Languages with capabilities such as embedded SQL or

powerful SQL application program interface (API) libraries will support this

easier than those which require custom coding to support a database.

- Popularity. Obscure languages are not going to be useful since it is unlikely that

they will interface with environments being developed for commercial use.

- Ability to Interface with GRASP. One of the key goals of this research is to

support GRASP. GRASP is currently be rewritten in Java, so the chosen

language would either need to be Java or be supported by it via a native interface.

There were three main candidate languages considered:

- Ada95. Ada95 was a strong candidate since it directly support object-oriented

concepts, is very portable, and could interface with GRASP through bindings.

Support for inexpensive databases, however was lacking. Ada95 also lacks the

new development popularity of the other languages considered.

- C++. This language was a strong candidate in all the categories. It offers direct

support of object-oriented programming, has excellent database options, very

popular, and could be integrated with GRASP. Portability is somewhat

problematic since vendors tend to customize their compilers slightly. However,

sticking to the draft ANSI standard could overcome this. A major drawback of

using C++ is that unlike Ada95 or Java, there is not a lot of strong typing or built-

in program safety options. This makes faulty code more possible in this language.

95

- Java. Like C++, Java is also a strong candidate in all the categories. Java is an

object-oriented language very similar to C++, has many database support options,

and easily integrates with the new version of GRASP being written in Java.

Additionally, it supports a stronger data type model than C++ and has automatic

garbage collection. The major drawback of Java is its speed. Java is compiled to

platform-independent bytecode and this bytecode is executed via a virtual

machine. Optimizations by vendors continue to improve Java's speed, however.

Because of Java's support of the features, and the ability to natively interface with

GRASP and other new IDEs being developed, it was selected as the language for the

framework. Sun Microsystems currently maintains the Java language specification, and

issues the reference Java Development Kits (JDKs). The framework was developed

using Sun Microsystem's JDK 1.2.2.

4.5.2 The Event Hierarchy

Java offers the capability of specifying "packages" of classes. A package is a grouping of

classes that either have similar functions, or they have a logical reason to be grouped

together. For example, there are Math packages for mathematical functions, the Abstract

Window Toolkit (AWT) for constructing simple graphical user interfaces, etc. The event

hierarchy was placed into a Java package called cframework.events. An application gets

access to these events by adding the line "import cframework. events . *" in the

start of the code.

96

Each event class was placed in a separate file. Because Java always performs dynamic

class loading, this allows a class to be changed, separately compiled, and placed back into

the system without requiring any other classes to be recompiled. Other classes only need

to be recompiled if the interface signature on a class's methods change.

The events themselves are essentially data structures, so the only methods

implemented in them were accessors and mutators for the class variables. Each event

also has the method toString() implemented so that it can easily be printed for debugging

output. The toStringO method prints the internal state of the object to a String variable.

4.5.3 Core Framework Components

The core application components were placed in the package cframework. As with

events, each component is stored in its own file which allows separate compilation.

4.5.3.1 Application Interface

The class cframework. CFInterface is the implementation of the application interface.

The mechanics of the class are implemented as specified in the previous architecture

discussion. The IDE creates a single instance of this class. The implementation of the

class provides an overloaded method called event(). This method is overloaded for every

allowable event type.' This is necessary so that individual processing can be done on

events as necessary. Providing a single, non-overloaded method that accepted anything

of type CFEvent would have meant creating a large case statement in the method. This

97

would have made the code unnecessarily complex and would have avoided a big

advantage of obj ect-oriented programming - polymorphism.

The methods that handle CFEvtFileOpen and CFEvtFileNew keep track of local file

handles. When one of these events is passed to the event() function, the object examines

its list of open files for an empty slot. It then returns the index of this slot as a file

handle. In subsequent operations, this file handle is placed into events by the IDE when

it creates them. An example of creating an application interface, opening an events file,

and inserting events is shown in Figure 4-11.

4.5.3.2 File Manager

The class cframework. CFFileManager is a utility class used by the file manager and the

database manager, it should never be created or accessed directly by an application or

analysis tool. As specified in the architecture, it contains the methods needed to create a

new event file, open an existing event file for the purpose of appending to it, and open an

existing event file for the purpose of reading from it.

CFFileManager is written so that it can eventually be placed into a network server

process. It does this by returning a file handle when an event file is opened, allowing

more than one file to be open at any time. When writing events, the file handle is passed

as a parameter to tell the file manager what event file to write events to.

98

import j ava.io.* ;
import cframework.*;
import c f ramework.event s.

4 class InterfaceTest
■ public static void main(String [] args) throws IOException

■ CFInterface evtInterface;
» CFEvent event;
• int handle;

// Create an interface
- evtlnterface = new CFInterface () ;
// Create an event file

- evtlnterface.createFile("events.log");
// Start a session

- event = new CFEvtSessionStart("UserOl");
- evtlnterface.event((CFEvtSessionStart)event);
// Simulate opening a file in the editor

- event = new CFEvtFileOpen("TestFile.Java");
- handle = evtlnterface.event((CFEvtFileOpen)event);
// Simulate closing the file

- event = new CFEvtFileClose(handle);
- evtInterface.event((CFEvtFileClose)event);
// End session

- event = new CFEvtSessionEndO;
- evtlnterface.event((CFEvtSessionEnd)event);
// Close event file

- evtlnterface.closeFile();

L}
■}

Figure 4-11. Example of Using CFInterface

Events are written to files using the method appendEvent(), and read from files using

the method getNextEvent(). If there are no events left to read from the file,

getNextEvent() returns the value NULL.

Java has a very robust file system allowing many different storage formats.

CFFileManager has been set up to allow optimized file handling for Java IDEs, and

portable file handling for non-Java IDEs. This is done by having two distinct storage

formats: binary and ASCII.

99

BINARY EVENT FILES

Java's file system allows objects to be written directly to files using a technique called

object serialization [Campione and Walrath 1998]. This technique lets a program open a

stream of type ObjectOutputStream and write objects directly to it. The objects being

written must have implemented the interface Serializable. The interface Serializable,

however, contains no methods. It merely allows the object writer method of the output

stream to work with the class.

The ObjectOutputStream will automatically write all the fields of the objects to the

stream, and handle transient and non-transient values. An example of a transient value

would be a reference to another object. The reference must be written in such a manner

that when the object is read back from the stream, the reference correctly points back to

the other object. This implies the other object exists, which implies that the serialization

scheme must know the correct order to create objects when reading them back out.

Java's implementation of this mechanism handles this automatically making it a simple

task to write events to a file.

Because a large number of events can be written to the file, a compressed character

stream is attached to the ObjectOutputStream. This is done by sending the output of

ObjectOutputStream to an instance of DeflaterOutputStream. This compresses the data

before passing it to an instance of FileOutputStream which writes the compressed data as

characters to a file.

100

/\
Events Events

\7
Obj ectOutputStream Obj ectlnputStream

/\
Object

\7
Object

DeflaterOutputStream InflaterlnputStream

\7
Compressed
Object

/\

FileOutputStream
>

Compressed
Object

>
FilelnputStream

Characters Characters

Figure 4-12. Event Writing/Reading Processes

When the file manager reads events from the file, there is a reverse of this process. An

instance of FilelnputStream reads compressed information, which is passed to an instance

of InflaterlnputStream. The InflaterlnputStream object uncompresses the data and hands

it to an instance of Obj ectlnputStream which converts the data back into an object. The

entire process of writing and reading objects is illustrated in Figure 4-12.

ASCII EVENT FILES

One of the problems with using binary files is that only an IDE written in Java can use

them. Development environments such as pcGRASP are written in C++, and cannot

directly instantiate and use a CFInterface object to write event files. Because of this, the

file manager accepts an alternate form of event file that is composed of ASCII text.

101

In this case, the development environment itself is responsible for the creation of the

event file. The basic format for each event in the ASCII file is the time of the event in

milliseconds since a defined epoch (usually Jan 1st, 1970), followed by the type of event.

Unique information about the event follows. The specific format of each event is

specified in Appendix A.

The file manager uses a different set of methods to read ASCII files. An ASCII file is

opened for reading using openFileASCII() instead of openFile(). Instead of using

getNextEvent() to read an event, the method getNextEventASCII() is used.

4.5.3.3 Database Manager

The database is managed through the class cframework. CFDatabaseManager. The

nature of this task makes the database manager the most complex of the framework

components. It contains methods to create new databases, process event files, return

event lists, return session lists, and return user lists.

The database manager is used by an analysis tool. This is done by instantiating a

single instance of CFDatabaseManager. The constructor for the object creates a

connection to the database and prepares it for use. To accomplish this, the user must

specify the location of the database via a unified resource locator (URL), a username, and

a password. CFDatabaseManager creates the connection to the database, and then logs in

to it using the supplied username and password. If there is a problem, it throws a Java

exception called SQLException.

102

JAVA DATABASE CONNECTIVITY(JDBC)

A major goal of the framework was to remain platform-independent. This means that not

only should the language the framework is written in be portable, but the database

management system it uses should also be portable. This gives the user of the framework

the flexibility to move the applications across operating systems without worrying about

the underlying database no longer working.

Java has a big advantage in this area not only because the language itself is portable,

but because it uses a portable toolkit for manipulating databases called the Java Database

Connectivity (JDBC) kit [Cornell and Horstmann 1997]. Rather than custom-coding a

database for the framework, we use the API available through JDBC to access the

underlying database. Because of the way in which JDBC works, the database does not

have to be written in Java. It merely has to communicate with Java through a JDBC

driver, or through a special driver known as a JDBC/ODBC bridge (ODBC is Microsoft's

Open Database Connectivity kit). Figure 4-13 illustrates the connections.

A JDBC driver supplies four major pieces of functionality:

- Database Connectivity. JDBC allows users to open a connection to a relational

database. This database can be hosted locally, or it can be made available

anywhere on the network. It is accessed by passing a URL to the driver. This

means that while the framework might be running on a Windows 98 computer,

the database may be running elsewhere on a Unix machine. JDBC makes this

transparent to the user of the API.

103

Java Application
A

*

JDBC Driver Manager

JDBC/ODBC
Bridge
if

ODBC Driver

*
JDBC Driver

T 1
Database

Figure 4-13. JDBC Connectivity

Data Definition Language (DDL) Commands. DDL allows us to set up the

database's data representation scheme. In a subset of SQL are the DDL

commands, the ones most commonly used are the CREATE TABLE, DROP, and

CREATE INDEX commands. JDBC supports these through a simple method

called executeUpdate() which accepts the command as a string. This method

accepts any command which does not return a result set. For a detailed discussion

of DDL, see [Korth and Silberschatz 1991].

Data Manipulation Language (DML) Commands. DML allows us to manipulate

the data in the database. The most commonly used SQL commands that do this

are the UPDATE and SELECT statements. Updates to the database are

accomplished using the executeUpdate() method since updates do not return a

result set. Queries on the database via the SELECT command, however, use the

104

method executeQuery() which passes the SELECT statement via a string. The

method returns a special structure which contains the results of the query. For a

detailed discussion of DML, see [Korth and Silberschatz 1991].

- Metadata. A useful capability of JDBC is its ability to describe the scheme of the

database. That is, JDBC can return the names of the fields in a table and describe

their representation. While this capability is not used by the framework, it is

useful for applications which may not have advanced knowledge of the database's

organization.

INSTANTDB

There are a wide variety of databases available that run under JDBC. To select one,

several factors were considered. First the size of the database system should not be

excessive in terms of memory and disk space used. Second, the database system should

be easy to use and setup, and not require extensive training to maintain. Third, a

preference was to have a database that was distributable with the framework, or that

could be obtained for minimal cost from a web site. Finally, while there was not an

extreme access speed requirement, the database system performance should not degrade

as more data was added.

The database selected for use with the framework was InstantDB, developed by

Instant Computer Solutions, Ltd., London, England, U.K. InstantDB has a very small

footprint, requiring only 160k of disk drive space for the class libraries, and only a simple

text file on the hard disk to describe the database's characteristics. The cost is free to

105

non-commercial and non-government users, and is very reasonable to all others.

InstantDB implements nearly all of the JDBC standard, and supports most of SQL '92.

A major advantage of InstantDB is that the fact that it is written entirely in Java. This

means that not only is the database itself portable, but the files that it creates are also

portable since Java stores data in a platform-neutral format. Thus a database created on a

Windows 98 machine can be sent to a Unix machine and still be read and manipulated by

the framework without translation between word formats. Some machines put the most

significant bit at the beginning of a word, others place it at the end.

The major disadvantage of InstantDB is its speed. While Java's speed is rapidly

approaching that of equivalent C or C++ code, it is still slower. Databases written in

non-interpreted languages will likely have better performance. The framework has been

implemented not to depend on InstantDB and allows the easy integration of alternatives

such as MySQL, mSQL, Oracle, Sybase, or Interbase. This can be done by changing the

connection string in the CFDatabaseManager's constructor.

DATABASE CREATION

CFDatabaseManager's constructor establishes a connection through JDBC to InstantDB.

InstantDB is given the location of a database properties file that describes where the

database is located and the settings of various performance tuning parameters on it. If

InstantDB determines the database files do not exist, it creates them and opens the

database connection. Note that this is a unique feature of InstantDB, other database

systems such as MySQL or mSQL require that the database files exist. If one of these

106

databases is eventually used in place of InstantDB, the CFDatabaseManager constructor

will throw a SQLException if the open fails.

The act of creating the database files does not establish the relational scheme within

the database itself. CFDatabaseManager supplies the method createDatabase() which

drops any existing framework tables and creates new, empty tables. These tables include

those defined in Section 4.3.4, plus three additional tables that are used to support

generation of unique identifiers: EventlDSequence, FilelDSequence, and

SessionlDSequence.

EVENT INSERTION

Event files are loaded into the database using the processEventFile() method. This

method takes three parameters: the name of the file, a boolean flag set to true if this is a

binary file or false if it is an ASCII file, and an optional username to associate with each

session in the file. Depending on the value of the file type flag, processEventFile() will

tell CFFileManager to open a binary event file or an ASCII event file. It also examines

this flag when determining to call CFFileManager's getNextEvent() or

getNextEventASCII(). Beyond that, processing is the same for both file types.

As events are read from the event file, the database manager watches for session start

events. If it finds one, it assigns it a unique identifier and records it in the sessions table.

Each event read out of the file after that is marked with that session identifier until either

a session end event is found, or another session start is encountered. If another session

107

start is encountered, this usually means the user did not properly close the environment

down.

Each event is inserted into the database in the method insertEvent(). This method

queries the event to extract the session, time, window, charFieldl, intField2, intField2,

and int Field3 fields for the database tuple that it creates. It then inserts this tuple into the

Events table.

Some events require special processing. Metrics events have embedded information

that must be stored in separate tables as described in Section 4.4.4.5. Events that involve

opening, creating, or saving files require manipulation of the file handles. Events that

operate on files always have a local file handle assigned by CFInterface. The

insertEvent() method gets a global handle from FilelDSequence and substitutes it for the

local handle. This ensures there are no handle conflicts in the database.

DATABASE QUERIES

CFDatabaseManager returns events via two basic queries: by event type or by session.

The method getEventList() is overloaded so that one version accepts an event type and

username. The other version accepts a session identifier. In the first version, it queries

the database for all events of the specified type that were created by the specified user. If

the username is NULL, then all events of the specified type are selected. If the event

type is of type EVT_ALL (defined in the class CFEventMap), then all events are

selected.

108

In either case, getEventList() constructs an SQL query in a String. This string is then

passed to the JDBC executeQuery() method which returns a ResultSet object. Each tuple

in the result set is converted back into an event using the method createEvent(). The

event is then add to a Java collection called a Vector, which operates like a linked-list

ADT. After all tuples in the result set have been processed, the Vector is returned to the

caller. The methods getSessionList() and getUserList() return a Java Vector containing

all sessions and all users in the database, respectively.

EXTERNAL DATABASE ACCESS

It is expected that any analysis tool that is written for the framework may require the use

of a database to support its operations. CFDatabaseManager contains a method getCon()

which returns a JDBC connection to the database. Analysis applications can use this

connection to create tables and populate them with data. The intent, however, is not to

give access to the tables used by the framework. Analysis applications should not

directly manipulate framework data via this connection.

CHAPTER 5. CASE STUDY: INTEGRATION WITH PCGRASP

5.1 INTRODUCTION

This chapter discusses how the framework was integrated with pcGRASP in order to

support comprehension experiments using CSDs. Background on the history of GRASP

is given, followed by a discussion of how pcGRASP fits into the project. This is

followed by a discussion of the necessary enhancements to pcGRASP to use the

framework, and the design and construction an anlysis tool to read the results. Finally,

the results of a series of end-to-end tests are presented.

5.2 PCGRASP

As noted in Chapter 2, GRASP is an NSF-funded project at Auburn University that seeks

to develop practical visualizations of algorithms, structures, and processes for use in

solving real-world software engineering problems [Hendrix et. al. 1998]. The primary

emphasis to date has been on the CSD. There are two main software development

environments that have been developed to support this: Unix GRASP which runs under

Unix/Linux environments, and pcGRASP which runs under Microsoft Windows

NT/95/98. Figure 5-1 is a screen capture of the pcGRASP environment.

109

110

Gj pcGRASP - cfBaiChait Java

|Fite Edit View Templates Project Compiler flun Windows Help

HSQ

□ |L^1B1 jl|3b|e| Eil^M*fel!Pll#';frlwN fl|E0N Bj «
cfBaiChart. Java

Generate CSD | RembveCSD Font Size:. r | r-
(protected void paintSolid(Graphics g)

—- double top;
— int width;

// Convert to a Java 2D context
—» Graphics2D g2 = (Graphics2D) g;
—"» Paint op = g2.getPaint();

width = tint) (m_xInterval*m_xRatio) ;
 g2.setColor(m_barColor);
—■» doiible tickSpot = m_adjXHin;

while (tickSpot < (m_adjXMax+ (m_xInterval/2M }
i
// Find the top of this bar
 top = findTop(tickSpot,m_xlnterval);
-§-\±t (top > 0.0)

{
// Draw a bar here
// Faint in a gradient if requested

pcGRASP Starting CSD Generation ...
pcGRASP CSD Generation Complete

Ipir Help, press Ft' (Lnl.Cpn,; INUM!

Figure 5-1. pcGRASP Main Screen

5.2.1 Background

The prototype tool developed to support GRASP was originally written in Ada and ran

under Unix. While it was innovative in the diagrams it could present to the user, it

suffered from poor CSD generation times. In 1995 work was begun to rewrite GRASP in

C to enhance peformance and provide greater compatibility with the X Windows graphic

user interface architecture. The result was a tool that was very user-friendly and suitable

for industry use, with CSD generation rates of over 5000 lines per second [Cross et. al.

1996].

Ill

GRASP, which originally supported CSD diagrams only for Ada, was subsequently

expanded to include C, C++, VHDL, and in 1998, Java. As part of the effort to improve

the visualization environment, GRASP was enhanced to allow syntax highlighting, color,

and font selection through the use of a CSD editor. GRASP is currently being rewritten

in Java to maximize its availability to users on different platforms.

5.2.2 Purpose

On of the drawbacks of the GRASP was that it was confined to the Unix environment,

which for most programmers meant it was available only at school or at work. In work

environments that used only Microsoft Windows operating systems, it was not available

at all.

pcGRASP was created in early 1997 to address the need for a version of GRASP that

could run natively in the Windows environment. This allowed users to generate CSDs

outside the work and school environment. It was also an easy way to deliver GRASP to

colleges and universities that maintained labs consisting mostly of personal computers.

5.2.3 Design and Implementation

The basic design philosophy behind pcGRASP was to create a Windows interface that

encapsulated the Unix CSD generator. Eventually, the CSD editor was ported over from

the Unix version of GRASP and integrated into pcGRASP. Thus, the major subsystems

of the environment are: the graphic user interface (GUI), the CSD editor, and the CSD

generator. The following sections discuss the pcGRASP architecture in greater detail.

112

5.2.3.1 Microsoft MFC Document- View Architecture

The lowest level API for communicating with windows is via the Win32 interface

supplied by Microsoft. This interface consists of several thousand functions and can be

quite daunting to even experienced programmers. Even when mastered, developing

applications from scratch can take a considerable amount of time.

To ease the development of Windows applications, Microsoft created an application

framework based on the Model/View/Controller classes from Smalltalk [Kruglinski

1996]. Known as the Microsoft Foundation Classes (MFC), they are a large group of

components that can be assembled to form a generic application. The programmer

controls how the components are put together, and adds the unique code required to

create a useful program.

In a typical MFC application, there are usually three main objects that do most of the

work. The application is responsible for starting the program and shutting it down, as

well as opening documents. Documents are non-visible constructs that hold information

that is being manipulated. Views are the visible element that a user works with to change

the data in a document. There can be multiple views on a single document, and multiple

documents open in a single application. Ancillary objects control other items in the user

interface and are usually embedded into an application, document, or view object.

5.2.3.2 pcGRASP Core Components

pcGRASP follows the MFC document-view architecture, and adds three major

components. The application object is CGraspApp, the document object is CGraspDoc,

113

CGraspApp o CGraspDoc CGraspView
1 0..* 1 1

1

1

1

1

CEngine CCSDEditor

Figure 5-2. pcGRASP Components

and the view object is CGraspView. The additional components are: CEngine, which

controls the generation of the CSD and compiling; CCSDEditor which is an editor

designed for use with CSDs, and a set of C routines which generate the CSD. The C

routines are the Unix CSD generation routines compiled under Microsoft Visual C++.

Figure 5-2 shows the relationship between these components.

5.2.3.3 Document Engine and CSD Generator

The CGraspDoc object in pcGRASP holds the characters that represent the source file

being edited. When a user requests that a compile take place, or that a CSD be generated,

the document has to invoke the correct compiler, or call the correct CSD generation

routine depending on the language the source code is written in.

To accomplish this, each document object is associated with a child class instance of

CEngine. CEngine knows how to correctly invoke the CSD generator and how to invoke

the compiler. This knowledge of what to call is created by subclassing CEngine once for

each of the major languages supported. Thus, the Java version of CEngine is called

CEngineJava and the methods for compiling and CSD generation are overridden.

114

As noted in the previous section, the CSD generator itself is the Unix C code compiled

under Microsoft Visual C++. About half the code is the output of a grammar ran through

Bison (a parser generator utility). A separate grammar is available for each language, and

the resulting code from each grammar is invoked by a C function specific to that

language.

5.2.3.4 CSD Editor

Each CGraspView object contains a single instance of CCSDEdit. CCSDEdit is a

Windows conversion of the Unix CSD editor. This editor is unique in that it is sensitive

to the existence of a CSD diagram in the editor window, and adjusts the diagram as

needed when users make changes. It ensures the cursor does not end up on CSD

characters, which means the programmer is free to work on the code without worrying

about deleting the CSD or somehow distorting it. In addition, the CSD editor is context

sensitive to the language being edited and will highlight key words, operators, strings,

etc. as desired by the user.

5.3 ENHANCEMENTS TO PCGRASP

In order to use the framework with pcGRASP, there were several major changes that had

to be made to the software. First, the code had to be instrumented so as to generate the

appropriate event when a user peformed key actions. Second, the parser that generates

the CSD had to be modified to collect software metrics during the parsing process. Last,

the software had to be augmented to include code that could properly output event files.

115

5.3.1 Event Instrumentation

Event instrumentation in pcGRASP is spread across the code in many places due to the

nature of the data being collected. In general, however, line-oriented events are caught

by the class CCSDEdit. CSD and compile events are recorded by CGraspView.

CGraspApp catches session start and end events, along with all opening and closing of

windows.

A dialog was added to the preferences sheet of pcGRASP that allows control of the

collection process. Specifically, users may specify the event file to write and activate or

deactivate event collection. In addition, since some events will probably not be needed,

the user may select which type of events should be collected: CSD generations,

compilations, window activations, file executions, and software metrics. Figure 5-3

shows the dialog.

A menu item was also added that allows users under PSP to specify what phase of a

project they are working on. It also includes menu items to indicate their work has been

interrupted by phone calls, conversation, or personal breaks.

5.3.2 Java Parser Enhancement

As noted previously, pcGRASP has high-performance parsers that assist in generating the

CSD. These parsers are created by passing a grammar file through the GNU Bison parser

generator. Each language has its own grammar file and resulting parser.

116

[pcGRASP Default Settings Preferences E

Workspace/Compilers : |Colors | CSD Window , |

! M

rv

etrics | Ada95 j C j C++ | Java] VHDL |;

letrics Data File: |BHffiBHrBBEII 'liBrowse...!,,..; ■

7 Activate Metrics Collection

auuiieuuMn lieins fr- •

R. CSD Generations R Automatic Metrics Collection

W Compilations !*? Executions

PY Window Activations

V Line Events

OK | Cancel Applp Help

Figure 5-3. pcGRASP Collection Dialog

In order to demonstrate the collection of software metrics, and to assist with classes at

Auburn University which are going to begin utilizing Java, the Java parser was modified

to collect logical and physical lines of code. It was also modified to collect cyclomatic

complexity.

Physical lines of code were defined as the number of physical lines in the file. Logical

lines of code were counted using the SPR method defined in Section 2.3.2.1. Some

modifications were made to this so that class declarations are counted as a line, and

method declarations are counted as a line. A package declaration, if present, is also

counted as one line.

117

Cyclomatic complexity is computed by counting the number of predicates (conditions)

in the file and adding one. This corresponds to the method specified by McCabe in

Section 2.3.3.1. This is computed on a method-by-method basis within each class.

In order to minimize the overhead of collecting these metrics, no computation takes

place inside the parser. Instead, an array of characters is passed to the parser - one

element for every character in the file. As constructs are discovered by the parser, this

array is modified to indicate where packages, classes, and methods start/end, where

conditions start/end, and where logical lines of code end. After parsing, the array is

processed by a routine which computes the actual metrics and puts them in the form

required by the software metrics event.

5.3.3 Output Format

The main problem with integrating pcGRASP into the framework stemmed from its

implementation language, C++. This meant that it could not directly write a binary event

file that Java could read properly. This left two possible options: invoke a separate

process that would start a Java virtual machine and communicate with it via sockets, or

develop an ASCII file format for writing events and have the framework read that.

The socket method would have been problematic for users of Windows who were not

on a network, since it would have required them to install network software they were not

actually going to use. In addition, this would require the user to download the correct

version of the Java Runtime Environment (JRE) and install it on their machine.

118

Because of these issues, pcGRASP outputs the events in ASCII to a file. The format

of this file is in Appendix A, and the mechanics of how the framework reads it is

described in Chapter 4.

5.4 ANALYSIS SYSTEM

Key to demonstrating the usefulness of the data collection framework was an analysis

tool that could show how correlating time with measurements produces meaningful

results. A tool called the "Collection Framework Analyzer" (CFA) was developed for

this purpose. It is capable of controlling the import of event files into the database

manager, organizing the data in terms of research and project groups, and displaying the

data in report and chart form. While it has been specifically tailored to work with

pcGRASP data, its architectural concepts leave it open to enhancement for other kinds of

environments.

5.4.1 CFA System Requirements

As noted in the introduction in Chapter 1, the main problem researchers and industry

share is collecting data on groups of individuals. A key concept in that problem is that

the data is organized by group. The analysis ofthat data comes from looking at reports

on a group's activities, or at a graphical representation ofthat activity in the form of a

chart. The idea of data, reports, and charts being organized around a group is a core

concept in the design of the CFA.

119

5.4.1.1 The Group Concept

CFA organizes information in terms of groups. This reflects the nature of research in

which individuals are organized into groups for an experiment. In industry, it reflects the

idea that projects are usually executed by a group of people. Support for Humphrey's

PSP is allowed by assigning only one person to the group - the programmer tracking

their statistics.

As Figure 5-4 shows, the group is the focal point for organizing and accessing

information. Note that individuals, sessions, and events can be present in several groups.

This way a researcher could define a group consisting of all test subjects, then create two

additional groups that represent the novices and the experts from the overall subject pool.

Industry users will usually have people who are working on more than one project, in

which case they will have programmers in several project groups.

Figure 5-4. Group Associations

120

5.4.1.2 Report Requirements

In order to support a variety of anticipated needs, several types of reports are possible in

CFA:

- Session Summary. A summary of all sessions for the group that lists the start

date/time of the session, the amount of time in the session, number of files

opened, number of compiles, number of compile errors, number of successful and

unsuccessful CSD generations, and percentage of session time the CSD was used.

- Session Detail. A listing of all events in a specific session in the order they

occurred.

- User Summary. A summary of each user's activity in a group.

- User Detail. A detailed listing of a user's sessions and total time spent in each

development phase as specified in the CFEvtPhase event.

- File Summary. A listing of each file a group has used, summarizing the activity

on the file.

- Software Metrics. A report for each file a group has used showing the latest

information known about its size and complexity organized by package, class, and

method.

Because these are only a small set of what will probably be a large suite of reports,

CFA has the ability to easily add new reports as required.

121

5.4.1.3 Chart Requirements

In addition to the reports above, there are a variety of charts possible:

- File Activity. A pie chart showing the amount of time a file was open and active

over all sessions in the group.

- File Activity Over Time. A bar chart showing the amount of time a file was open

and active over a given interval of time. This is useful for determining if most of

a file's use was at the beginning, end, or middle of a project.

- Events Over Time. A bar chart showing the events recorded in a session over a

given interval of time. Useful for determining things like when the most compiles

occurred or when users are activating the CSD.

- CSD Use Over Time. A surface plot of the fractional portion of a session that a

CSD was active over a given time interval.

- File Growth Over Time. A plot of the amount of logical or physical lines in a file

(or files), over time.

- File Complexity Over Time. A plot of the total cyclomatic complexity of a file (or

files), over a given interval of time.

Like reports, CFA has the ability to easily add new charts as required.

5.4.2 Analysis System Design

The basic design of the CFA divided it into four main subsystems: the application,

groups, group display items, and display item user interface components. Figure 5-5

shows the relationships between these components.

122

The design considers that users will need to define groups and then assign display

items to them in the form of reports and charts. Each of these display items will have a

unique configuration of data and preference settings for that group. These settings are

stored in the database so they are persistent between sessions.

5.4.3 The Application Object

The application object, called Analyzer, is responsible for coordinating all major tasks.

Upon startup, it creates an instance of CFDatabaseManager and opens the database. It

reads all groups from the database and allows the user to manipulate them. It allows the

user to create new groups. It allows the user to import both binary and ASCII event files

into the database.

User

Application

1 1.

Session

T
1

1..*

Event

SelectionTree

Displayltem

Chart

ChartU I Display

Report

0..*

ReportU I Display

Figure 5-5. CFA Class Diagram

123

5.4.3.1 The Group Object

The group object, called Group, maintains a collection of sessions it is associated with,

and a collection of group display items. All access to charts and reports is through a

Group object, and it is responsible for ensuring they are correctly written and retrieved

from the database. When a group is modified, it ensures that all displayed reports and

charts are updated. When a group is removed, it ensures that all associated reports and

charts are also removed.

5.4.3.2 Reports and Charts

As shown in Figure 5-5, the classes Report and Chart implement the interface Groupltem.

The idea of an "interface" is somewhat unique to Java. A simplified explanation would

be to consider it a type of inheritance: an interface can be considered a parent class

where all methods are abstract and virtual, and therefore must be implemented.

The Groupltem interface allows a Group object to abstractly handle its charts and

reports. Group display items can be told to return a displayable user interface element

(the chart or report), close the user interface element, set user interface settings, and

refresh the user interface element.

The handling of the display data and the handling of the user interface are kept

separate. Subclasses of Report and Chart do not directly manipulate the display. Their

purpose is to communicate with the CFDatabaseManager instance to collect and organize

the information that needs to be displayed. To display the information, they create

124

instances of cfChart or cfReport which directly manipulate the Java GUI to display a

variety of charts and reports.

5.4.4 Chart Package

As noted in the previous section, different objects handle data manipulation and user

interface manipulation. This was done to ensure that if better user interfaces became

available, the tool could be adapted to use them. Likewise, if better database access

methods become available, the user interface routines could still interface to them.

A major problem, however, was the lack of general purpose chart and report packages

for Java. A search of the Internet revealed several commercial packages available, but

most were not written in the current version of the Java 2D graphics library and had poor

appearance. The package that was written using the Java 2D graphics library was

somewhat costly and did not contain many required features.

To solve this problem, a package of generic chart classes was written using the Java

2D graphics library. This library was distributed starting with JDK 1.2 and contains a

robust set of primitives that allow users of it to specify line thickness, line end caps, line

joints, line dash patterns, gradient patterns in polygon fills, a rich set of font operations,

and affine transformations on all shapes and fonts.

The package, whose structure is shown in Figure 5-6, has the base class cfChart.

There are two subclasses of cfChart representing major chart types: cfBarChart and

cfLineChart. cfChart is capable of accepting multiple data series for display, where a

data series is an array of x, y values encapsulated by a cfDataltem object. It is

125

cfPieChart

Figure 5-6. Chart Package Class Diagram

responsible for drawing the chart titles, axis, labels, grid lines, and background gradients.

For the x axis, it can display numeric labels computed from the series itself, or display

string labels supplied by the user. It can rotate the labels 90 degrees if requested by the

user. As the size of the chart is changed by the user, it determines how many labels can

be displayed and removes them as necessary to eliminate crowding.

cfBarChart displays a conventional vertical bar chart. It can display both solid bar

charts where all the values of the data series are totaled into a single value for each bar, or

it can display stacked bar charts where each data series value is shown separately as a

segment of each bar. For solid bar charts, the bars can be colored in a gradient. Negative

values are allowed, and the axis will be adjusted accordingly to display bars going down

instead of up. Samples of a solid bar chart and stacked bar chart are shown in Figure 5-7.

cfLineChart is capable of displaying line plots, surface plots, or scatter plots. For line

and scatter plots, symbols may be plotted at each data point. Currently available symbols

are squares, circles, and triangles in three different sizes. For line and surface plots, the

line or surface area color can be specified for each data series. Figure 5-8 contains

examples of line, surface, and scatter charts.

126

A Smple Bar Chart

"" i I.
',X| ; 1

st '""'< i 1 III

IÜF 1 —| ! BH ||1 J

"~l i
-co ^ i

"'"°! i
'.°i j

-2.0 -1.0 0.0 1.0 2.Ö 5.0 4.0 5.0

X Axis Title

Figure 5-7. Solid and Stacked Bar Charts

cfPieChart does not inherit from cfChart. The reason for this is the inherent

differences in how data is organized and displayed. cfPieChart keeps a single data series

where each item in the series may be assigned a unique color and label. If a color is not

specified, the chart assigns one. Each element in the data series has a flag that indicates

whether it should be "cut-out" from the pie. If this is set to true, then the segment for that

element is translated a small distance from the center so that it looks as if it had been cut

and moved outward. The effect is to highlight that value to the viewer. An example of a

pie chart with a cut-out value is shown in Figure 5-8.

The above object classes are not tailored to CFA or the data collection framework.

Any application can instantiate and use them. Since they inherit from JPanel, they can

easily be embedded into other user interface elements.

5.4.5 Implementation

As noted in the previous section, the main application object is the Analyzer which is a

subclass of Java's JFrame. A JFrame is the basic window that exists in X Windows

127

under Unix or in Windows 95/98/NT. It provides a border, a title bar, a menu, and

controls for sizing/closing the window. In Java's Swing library (one of two available

GUI APIs under Java) applications, a JFrame can be considered the outermost container

for all other user interface objects.

Analyzer divides its display into two panels. One panel is of type AnalyzerTreePanel

which controls the display and manipulation of groups. The other panel is of type

JDesktop and is a container for multiple windows called JInternalFrames that are in turn

containers for cfChart and cfReport objects. Analyzer uses the JSplitPane mechanism for

dividing the display, which allows the user to move a bar along the horizontal axis to

AUne Plot Chart

H T«l Group On«
^H Test Group Two
IfflTtst o,oup Three

55.0'

30.0'

^" 10.0

S.v. '■y*^ V\V-y~^-
I 1 ^ § i % 111

X Axis Label

BU31I
A Scatter Plot Chart

^| Test Group On*
^H Test Group Two
EH Test Group Three ;

4
0.0 ;

as.o

30-w

(A 30.0

>

A

A A

A A

A

i

5.0.
A & A

f * & A

0 o I'O A 5.0 4.0 £.0 tT& ?.(; 9.0 0.0

X Axis Label

A Surface Plot Chart

Test Group On«
Test Group Two
Test Group Three

7/11.-66 7/1S.-66 7.-1OT5 ?/1£*6 ?!2C.V<3

X Axis Label

A Pie Chart

(3k Hone
■Itwo
HI three
□ four
El^rsve w

Figure 5-8. Line, Scatter, and Pie Charts

128

Collection Framework Data Analyzer

• File Group Session Chart Report Help

Groups

:| 3 Groups
9 Ö All Sessions fl

r |4 Event Count
i &■> File Activity
j ifc CSD Usage
■ [H Summary

9 C3 Project One
) 0:= File Activity
'■ B File Metrics

9 C3 Project Two
:■ i|4 Event Count

■ |H| Metrics
9 0 P_rojectThree

h O' File Activity
j ifc CSD Usage
i H) Sessions
' Hi File Metrics

Figure 5-9. Collection Framework Analyzer

divide the displayed region. Figure 5-9 shows the main CFA display with the two panes

and divider.

5.4.5.1 Group Tree Pane

As shown in Figure 5-9, the AnalyzerTreePanel shows all the groups defined. Each

group shown on the tree panel is an object of type DefaultMutableTreeNode which the

Java JTree structure uses to show tree diagrams. DefaultMutableTreeNode contains an

object reference that CFA uses to point to a Group for group display nodes in the tree,

129

and to a Groupltem for leaf nodes in the tree which are the charts and reports. Depending

on the type of node, a unique icon is rendered for each chart and report type.

The AnalyzerTreePanel has a mouse listener interface attached to it so that if the user

right-clicks the mouse on a group or group display item, a popup menu appears which

allows them to manipulate it. If the user double-clicks on a display item, it opens the

corresponding chart or report in the desktop pane.

5.4.5.2 Chart/Report Desktop Pane

An important capability of CFA is to be able to compare different charts to understand

the differences between groups. This is supported by the JDesktopPane portion of the

main application window. This pane opens individual frames and organizes them in a

manner similar to Microsoft's Multiple Document Interface (MDI). For a detailed

description of MDI, see [Petzold 1996].

Each frame on the desktop pane is an instance of AnalyzerlFrame. AnalyzerlFrame

subclasses JInternalFrame and adds to it two major components: the chart or report, and a

set of buttons that control it. The chart or report is a panel that is returned by a call to the

method getDisplayPanel() which is defined in the Groupltem interface. The control

buttons allow the user to bring up a preferences dialog via the Groupltem

queryProperties() method, requery the data being displayed to ensure it is current via the

Groupltem refreshData() method, and print the display item. As of this writing, print

functionality had not been implemented.

130

5.4.5.3 Groups

As noted in the design, the application loads the Groups from the database. The

implementation of this is accomplished by calling the static method getDBGroupList() on

the Group class. The Group class then goes to the database and instantiates instances of

itself, returning the instances as a Java Vector collection.

Each Group object maintains a vector of charts and a vector of reports. It provides

operations for the creation and removal of these items through the add(), removeChart(),

and removeReport() methods. The methods getChartList() and getReportList() allow the

object to return lists of its contained charts and reports.

Groups are responsible for removing themselves from the database. To accomplish

this, the application calls a group's removeFromDB() method. This deletes any

information from the database regarding this group. The group's charts and reports are

also removed as part of this process.

5.4.5.4 Reports and Charts

Similar to the Group class, both Chart and Report contain static methods for loading

instances from the database. The Group calls getDBChartList() and getDBReportList()

in the Chart and Report classes. These classes return a Vector containing instances of

themselves created from information stored in the database. Like Groups, reports and

charts contain remove() methods that remove them from the database.

Reports and charts do not directly manipulate the display. Instead, when the

Groupltem method getDisplayPanel() is called, they access the database to process event

131

information. This information is stored in an intermediate format and then loaded into an

instance of cfChart or cfReport. The cfChart or cfReport instance is passed back from the

getDisplayPanel() call and is eventually embedded in an AnalyzerIFrame() object.

An additional responsibility of group items is to display a preferences dialog unique to

the chart or report being shown. Each chart and report has its own dialog that appears

when the Groupltem method queryProperties() is called. The user changes the dialog

settings, and the group item stores the settings into the database where they are

remembered the next time this chart or report is opened on this particular group. An

example dialog is shown in Figure 5-10.

!^5Event Activity July 10. 1999 B"x]
j •- ■ :-■ ■ ■ ■;:■. : , -■

IX Axis YAxis Misc Ddta J Events

i-.:X Axis. Title:.. Time f;f

i Interval:. ■ 1.0

j 1 Interval Unit; Minutes ^

1 r&aW Time.fyy^^^ 1999/07/1013:00:00

I End Time toyyjrnm/dd hh;mm:ss): 1999/07/1015:00:00

1 '12' Draw X Axis?

D Draw Vertical Grid Lines?

I [2 Draw X Axis Labels?

j 12 Rotate X Labels?

OK Cancel

Figure 5-10. CFA Preferences Dialog

132

5.4.5.5 Multithreading

Several of the tasks in CFA can take a long period of time to execute. In order to give the

user feedback about the progress of the task, Java's JProgressBar was used. This bar

works by polling a task at specified intervals. The task being polled supplies an integer

value or a string for the JProgressBar to display. The task also signals when it has

finished, at which point the JProgressBar removes itself.

To make this work several key tasks in CFA had to be set up to run in their own

thread. These tasks are the event file import, report generation in the Report classes, and

chart generation in the Chart classes. This somewhat complicates the implementation

since each object with this kind of task must implement the interface (defined by CFA,

not Java) ProgressTask. Objects that implement this interface can be passed to an

instance of ProgressDialog which will monitor them. ProgressDialog subclasses

ProgressBar to tailor it to the CFA environment.

A minor change was made to CFDatabaseManager to support this concept. As records

are read from event files and imported into the database, a counter is kept. By launching

the import in a different thread, a ProgressBar is created that monitors this count of

events to show progress.

5.5 TESTS CONDUCTED

To verify that the framework operated correctly under a variety of conditions, several

tests were performed. These tests checked to ensure that: 1) events were recorded

accurately; 2) software measures were recorded and transferred, 3) large amounts of data

133

would not adversely affect performance, and 4) the data was portable across platforms.

Detailed results of each test are contained in Appendix B. The descriptions of each test

and a summary of results are given in the following sections.

The host machine contained the following equipment:

- Processor: 400 Mhz Intel Celeron.

- Memory: 96 Megabytes of PC 100 SDRAM.

- Hard Disk: 10 Gigabyte Western Digital at 5400 RPM, 11 ms average seek time.

- Motherboard: ABIT BM6 set to 66 Mhz bus speed.

- Operating System: Microsoft Windows 98 (Linux for the portability test)

5.5.1 Session Data Test

The first test was to ensure that events were being correctly recorded by the framework.

A script was developed that caused all possible events to be generated. This script was

executed manually in pcGRASP and the event file was then exported. The script and

results are in Appendix B.

After manually checking the ASCII event file to ensure all events had been recorded

in the correct format, CFA was used to import them into the database. A command-line

tool supplied with InstantDB was then ran and all the events were listed in the Events

table to ensure they had been correctly recorded. CFA was then used to generate a

session detail report and the list of events in that report was checked to ensure they were

all correctly listed.

134

In each case the data was correctly recorded and retrieved, indicating the framework is

working. An unexpected side-effect of the Windows 98 environment is that when a

menu is activated, it deactivates the editing window and reactivates it when the menu is

closed. This results in extra activate/deactivate actions being recorded. Since the

resolution of the pcGRASP collection mechanism is in seconds, these extra events occur

so quickly they do not contribute to the final totals for file activity.

5.5.2 Software Metrics Test

In this test the metrics collection routines of pcGRASP and recording/retrieval routines of

the framework were tested. The goal was to ensure that logical lines of code, physical

lines of code, and cyclomatic complexity were being correctly handled.

To accomplish this, three contrived Java files were created to exercise the metrics

routines. The first file, "Testl.java," contained one class and all the methods were simple

routines containing either no code, an if statement with one predicate, and if statement

with multiple predicates, or a switch statement of vary degrees of complexity. The first

file was not part of a package.

The next file, "Test2.java," was named part of a package called "metricstest" and

contained two classes. The first class repeated the methods in the first file, "Testl.java."

The second class contained methods with mixed if/switch constructs.

The last file, "Test3.java," was named part of the package "metricstest" and contained

a single class. This class contained a method with an anonymous inner class that

135

contained conditions. The class itself also contains a named inner class with conditions

inside its methods.

pcGRASP was used to run the metrics analyzer across the three files. CFA was then

used to import the data into the database and generate a software metrics report. Both the

ASCII event file generated by pcGRASP, and the report generated by CFA were then

checked for consistency.

The reports produced by pcGRASP were compared against the reports extracted from

the database by CFA. These reports matched, indicating the data is being stored correctly

at the file, class, and method level. The reports were not checked for correctness in terms

of LOC counts or cyclomatic complexity. This would require a much larger and more

comprehensive suite of test programs and is beyond the scope of this research. The files

used for the test are in Appendix B.

5.5.3 Large Dataset Test

This test exercised the ability of the framework to store information in the database and

retrieve it when the dataset being manipulated was large. This was also a test of the

capability of the underlying database, InstantDB, since the framework passes along the

appropriate SQL statement depending on what operation is being performed. The author

of InstantDB indicates that the database performs satisfactorily up to 1,000,000 records

(the limit of his testing).

His results were verified by inserting 250,000 events into the database in 50,000 event

increments and taking time measurements at each increment for time to insert, time to

136

Events DB Size
Insert
Time Rec/Sec

Full
Extract Rec/Sec

Single
Extract Rec/Sec

0 80k
50058 13042k 1425.53 35.1 52.56 952.4 .31 522.6

100116 25599k 1780.41 28.1 100.6 995.2 .41 395.1
150174 38557k 2118.69 23.6 190.05 790.2 .55 294.5
200232 51515k 2426.34 20.6 256.47 780.8 .71 228.2
250290 64473k 2835.42 17.7 321.84 777.7 .79 205.1

Table 5-1. Database Load Test Results

generate a full session summary report, and time to generate a summary report on a set on

two sessions (162 events). In addition, the size of the database tables was recorded at

each increment to determine if they were growing in a linear fashion. Growth larger than

linear would indicate a potential problem in how the database was storing information

internally.

The 50,000 record event files were created by performing multiple concatenations of

the events from the script in the session data test described previously. CFA was then

instrumented to compute the time of each import operation, and the time to generate a

session summary report. Note that the session summary report analyzes each event and

therefore performs maximum evaluation of the data.

The results of this test are shown in Table 5-1. The time for extracting the data in

summary reports is the average of five executions of each report. Full extract refers to

running a report across all sessions in the database. A single extract refers to running a

report on a group containing the first and last session in the database.

137

This test revealed several problems with InstantDB. As can be seen from the table,

performance of inserts degraded as the number of records increased. In addition, both

kinds of extracts suffered performance penalties as the number of records increased.

These problems do not prohibit users from using InstantDB as the underlying database,

but this may involve several making compromises. First, the user may need to limit the

size of the database by not collecting line-level data. The activities around moving the

cursor and mouse will probably account for a large majority of the events in a file.

Second, the user can ensure that separate databases are maintained for different projects

to prevent one database from becoming overly large. Finally, the user can substitute

another database with JDBC capability and a faster database engine.

5.5.4 Platform Portability Test

The final test of the framework was to ensure that cross-platform compatibility existed.

To accomplish this, the data from the first test was placed into an event database under

Windows 98. This database was then copied to the same machine running Linux. CFA

was then executed using the Blackdown Linux distribution of JDK 1.2. A new group

with two sessions was created. A session summary report and a file activity chart was

created was created.

The database was then copied back to the original Windows 98 environment. CFA

was used to verify that the Linux created group and reports could be opened and

examined.

138

The results of this test found no problems in executing CFA on all the environments.

The database's integrity remained intact regardless of the environment manipulating it, as

all reports showed the expected results. Based on this test, it appears that CFA and the

database do have satisfactory cross-platform capabilities.

CHAPTER 6. CONCLUSIONS

6.1 INTRODUCTION

The preceding chapters discussed the problem with collecting software and human

comprehension measurements. Background work in this area was presented followed by

a specific set of problems that needed to be solved to meet measurement needs. A data

collection framework that stored measurements as events to preserve time information

was proposed as a solution. The previous chapter demonstrated how the framework

could be successfully integrated into an IDE and used for capturing these measurements.

This chapter examines the conclusions that can be drawn from this work. First, the

framework is evaluated to show that it did meet the goals outlined in Chapter 3. Next,

the impact of the framework is evaluated in terms of what new knowledge has been

gained by creating it, and what the benefits are to research and industry. Last, future

work that can be conducted in this area is examined.

6.2 DOES THE FRAMEWORK MEET ITS GOALS?

Chapter 3 outlined several specific problems that needed to be solved. The following

sections discuss how the data collection framework solves problems in the areas of

measure correlation, data collection, data representation, storage, and analysis.

139

140

6.2.1 Correlation of Measures

The problem here was that studies of comprehension often do not take into account the

nature of the code that is being used. It was demonstrated that not only can the

framework track programmer actions as they work with the code, it can simulaneously

record the state of the code when the actions took place. This is easily done using the

events over time and software metrics over time reports.

6.2.2 Data Collection

This problem dealt with how to accurately observe and record programmer actions.

Research uses this for comprehension experiments, industry for the personal software

process. The framework solves this by providing a transparent mechanism for recording

detailed programmer actions. This activity can then be examined in summary form via

the session summary report, or in detailed form in the session detail report.

6.2.3 Data Representation

Representing the data properly so that it could be analyzed was a major issue. Not only is

there difficulty in correlating measures, as mention above, but there are problems that

need to be avoided in terms of using the wrong scales for storage and analysis. The

framework is not able to prevent a user from analyzing the data using an incorrect scale if

the analysis tool they write wants to do that. What it does do, however, is ensure that the

data is not summarized on the wrong scale internally. In other words, for measures such

as cyclomatic complexity which Fenton argues is nominal, the framework does not store

141

it internally as averaged values over time. Instead, explicit values for each point in time

are stored, avoiding incorrect nominal scale use.

6.2.4 Storage and Analysis

The last major problem involved creating a historical database of file activity and metrics.

The framework keeps all of its data in a relational database. Through reports such as file

activity industry users can examine this data to predict how long future projects will take.

Additionally, since the framework tracks cyclomatic complexity of code, managers can

also predict the testing burden for new projects based on previous data.

6.3 IMPACT OF THE FRAMEWORK

A key criteria of any research project such as this is to examine whether it expands the

body of knowledge in its field, and whether that knowledge produces tangible benefits.

In this work, new information has been contributed to the field in terms of a methodology

for: 1) how to correlate software and human experiments, and 2) how to correlate those

experiments with time. The framework is the tool that implements that correlation

methodology.

The following sections discuss the major benefits to this approach.

6.3.1 Benefits to Research

Researchers looking into how programmers comprehend software can now follow their

actions long term. Most experiments cited have been of short duration, usually just a few

hours, where the subjects were observed and questioned during the experiment. With the

142

framework, they can now be monitored for long periods to determine what files they used

and when they used them to gauge whether they were adopting a bottom-up approach or

a top-down approach. This is not to imply the framework is a necessarily a substitute for

observation, there will be a need to occasionally ask the programmer why they took

certain actions. The framework could improve accuracy, however, if combined with

direct observation.

Projects that are developing new techniques for visualizing or manipulating software

will gain significant benefits. The framework can answer questions such as: How often

are the features used, and for how long? Is the feature used throughout development, or

only at certain critical points? What was the nature of the software? By understanding

the context of when a feature was activated, researchers can look at ways to improve its

usefulness.

Those attempting to validate software metrics in terms of real-world use will find the

framework very beneficial. The framework keeps a historical database of a system's

metrics, and this can be used to correlate with reported errors. Also, the framework can

answer questions like: Does more complex software require more maintenance time?

Does more complex software result in more errors or changes over the life of the

software?

6.3.2 Benefits to Industry

Industry gains from the framework's ability to track historical information regarding

what set of files is being used the most often. If a manager notices that a file has activity

143

associated with it that is far out of proportion to other files, it may mean the file should be

examined to determine if it needs to be split into smaller segments. It may mean the file

is a candidate for being rewritten if the activity can be correlated to testing faults

associated with the file.

Additionally, the framework can point out which files have not just had the most

activity in terms of time spent on them, but it can also indicate files that have had

significant structural changes over time. If a file changes significantly in terms of its

lines of code, complexity, or other software measure, this may indicate a need to examine

it in a code walkthrough.

Finally, the framework's ability to track time spent in different phases of development

will help those individual programmers who are logging their time as part of PSP.

6.4 FUTURE WORK

The fields of software comprehension and validation of software metrics are constantly

looking at difficult problems and probing into new avenues of research. This leaves a lot

of room for expanding the framework and using it to further other research goals.

6.4.1 Framework Expansion

The framework as written is a core set of components that can be easily expanded.

Enhancements that would provide significant benefits include:

- Integration of the framework into other environments such as CASE tools.

- Integration of the framework with the Java version of GRASP.

144

- Adding enhanced reports to assist users with the computations involved in PSP.

- Inclusion of comprehension test scores as stored data to show how comprehension

changed over time in long-term experiments.

- Implement the ability to print all charts and reports.

- Implement the ability to export charts and reports to HTML format.

- Create a network server that feeds events to an instance of CFFileManager for

real-time data collection. This would also require changes to CFInterface to allow

it to send events to the network server process instead of directly to a file

manager.

6.4.2 Research

The capabilities of the framework allow researchers to look in greater depth at some key

areas:

- CSD Studies. The framework can be used to record long-term studies of CSD

usage to determine how and when programmers use it.

- Architectural Diagrams. GRASP will soon have the ability to show architectural

diagrams. Studies using the framework can determine what diagrams are used

most often, and at what points in development they used.

- Structure Folding. Another feature being added to GRASP, structure folding

allows users to "fold" code so that it is hidden from view. The framework can be

used in studies to determine how users take advantage of this feature.

145

- Correlation Studies. An interesting research project would be to recreate the

studies of von Mayrhauser, Soloway, Pennington using a variety of code

structures to determine what effect different software attributes have on

comprehension strategies. The framework would be essential to knowing if a

programmer switches strategies as the code complexity changes.

The framework provides a valuable tool in the researcher and industry user's toolkit of

data collection methodologies. Its ability to transparently collect data for long-term

studies means that it is now possible to create experiments to accurately gauge the effects

of different visualizations. In the next step of research, beyond this dissertation, the

framework and CFA will find direct uses as they are put to work in gauging the

effectiveness of the CSD on program development.

REFERENCES

ALBRECHT, A.J. 1979. Measuring Application Development Productivity.

Proceedings of the Joint SHARE, GUIDE, and IBM Application Development

Symposium, (October 1979), 83-92.

ALBRECHT, A.J. 1984. AD/M Productivity Measurement and Estimate Validation,

IBM Corporate Information Systems, IBM Corp., Purchase, N.Y.

ANTIS, J.M., EICK, S.G., AND PYRCE, J.D. 1996. Visualizing the Structure of

Large Relational Databases. IEEE Software, (January 1996), 72-79.

ARUNACHALAM, V., AND SASSO, W. 1996. Cognitive Processes in Program

Comprehension: An Empirical Analysis in the Context of Software Engineering. Journal

of Systems Software, 34, 177-189.

BALL T., AND EICK, S.G. 1996. Software Visualization in the Large. Computer,

18, 4 (April 1996), 33-43

BASILI, V.R., AND HUTCHENS, D.H. 1983. An Empirical Study of a Syntactic

Complexity Family. IEEE Transactions on Software Engineering, 9(6), 664-672.

BASILI, V.R., AND WEISS, D.M. 1984. A Methodology for Collecting Valid

Software Engineering Data. IEEE Transactions on Software Engineering, SE-10, 6

(November 1984), 728-738.

146

147

BASILI, V.R., BRIAND, L.C., AND MELO, W.L. 1996. A Validation of Object-

Oriented Design Metrics as Quality Indicators. IEEE Transactions on Software

Engineering, 22, 10 (October 1996), 751-761.

BATES, P.C. 1995. Debugging Heterogeneous Distributed Systems Using Event-

Based Models of Behavior. ACM Transactions on Computer Systems, 13, 1 (February

1995), 1-31.

BIEMAN, J.M. 1996. Fundamental Issues in Software Measurement. Software

Measurement, International Thomson Computer Press, London, U.K.

BOEHM, B.W., BROWN, J.R., AND KASPAR, J.R. 1978. Characteristics of

Software Quality, TRW Series of Software Technology, Amsterdam, North Holland.

BOEHM-DAVIS, D.A, FOX, J.E., AND PHILIPS, B.H. 1996. Techniques for

Exploring Program Comprehension. Proceedings of the 1996 Workshop on Empirical

Studies of Programmers, 3-37.

BOOCH, G. 1994. Object-Oriented Analysis and Design with Applications,

Benjamin/Cummings, Redwood City, CA.

BRIAND, L.C., MORASCA, S., AND BASILI, V.R. 1996. Property-Based Software

Engineering Measurement. IEEE Transactions on Software Engineering, 22, 1 (January

1996), 68-85.

CAMPIONE, M., AND WALRATH, K. 1998. The Java Tutorial Second Edition:

Object-Oriented Programming for the Internet, Addison-Wesley, Reading, MA.

148

CANFORA, G.L., MANCINI, L., AND TORTORELLA, M. 1996. A Workbench for

Program Comprehension During Software Maintenance. Proceedings of the 4

Workshop on Program Comprehension, 30-39.

CARPENDALE, M.S.T, COWPERTHWAITE, D.J, AND FRACCHIA, F.D. 1997.

Extending Distortion Viewing from 2D to 3D. IEEE Computer Graphics and

Applications, (July/August 1997), 42-51.

CHAN, P., MUNRO, M. 1997. PUI: A Tool to Support Program Understanding.

Proceedings of the 5{ International Workshop on Program Comprehension, 192-198.

CHIDAMBER, S.R., AND KEMERER, C.F. 1994. A Metrics Suite For Object

Oriented Design. IEEE Transactions on Software Engineering, 20, 6 (June 1994), 476-

493.

CITRIN, W.C., SANTIAGO, C, AND ZORN, B. 1996. Scalable Interfaces to

Support Program Comprehension. Proceedings of the 4' Workshop on Program

Comprehension, 123-132.

COAD, P., YOURDON, E. 1991a. Object-Oriented Analysis, Yourdon Press,

Englewood Cliffs, NJ.

COAD, P., YOURDON, E. 1991b. Object-Oriented Design, Yourdon Press,

Englewood Cliffs, NJ.

CORNELL, G., AND HORSTMANN, C. S. 1997, Core Java, Second Edition,

SunSoft Press/Prentice Hall, Upper Saddle River, NJ.

149

CROSS, II J.H., BAROWSKI, L.A., HENDRIX, T.D, AND TEATE, J.C. 1996.

Control Structure Diagrams for Ada95, In TRI-Ada '96, Conference Proceedings on

Disciplined Software Development in Ada, 143-147.

CROSS II, J.H., CHANG, K.H., HENDRIX, T.D., CHAPMAN, R.O., AND

MCQUAID, P.A. 1997. Visualization and Measurement of Source Code. Crosstalk,

STSC, Hill Air Force Base, Utah, 10, 12 (December 1997),

http://www.stsc.hill.af.mil/CrossTalk/1997/dec/visualization.html

CURTIS, B., SOLOWAY, E.M., BROOKS, R.E., BLACK, J.B., EHRLICH, K., AND

RAMSAY, H.R. 1996. Software Psychology: The Need for an Interdisiplinary Program,

Proceedings of the IEEE, 74, 8 (August 1986).

CURTIS, B., SHEPPARD, S.B., KRUESI-BAILEY, E., BAILEY, J., BOEHM-

DAVIS, D.A. 1989. Experimental Evaluation of Software Documentation Formats. The

Journal of Systems and Software, 9, 167-207.

DEMARCO, T. 1979. Structured Analysis and System Specification, Prentice-Hall,

Englewood Cliffs, NJ.

EICK, S.G., STEFFEN, J.L., AND SUMMER, E.E. 1992. Seesoft - A Tool For

Visualizing Line Oriented Software Statistics. IEEE Transactions on Software

Engineering, 18, 11 (November 1992), 957-968.

FAVRE, J. 1997. Understanding-In-The-Large. In Proceedings of the 5th

International Workshop on Program Comprehension, 29-38.

150

FEDCHAK, E., AND VIENNEAU, R. 1996. A History of Software Measurement at

Rome Laboratory. November 1996, Technical Report, Contract F30602-89-C-0082,

Rome Laboratory, RL/C3C, Rome, New York.

FENTON, N. 1994. Software Measurement: A Necessary Scientific Basis. IEEE

Transactions on Software Engineering, 20, 3 (March 1994), 199-206.

FENTON, N., PFLEEGER, S.L., AND GLASS, R.L. 1994. Science and Substance: A

Challenge to Software Engineers. IEEE Software, (July 1994), 86-95.

FENTON, N., AND PFLEEGER, S.L. 1997. Software Metrics: A Rigorous &

Practical Approach, International Thomson Computer Press, London, UK.

FIUTEM, R., MERLO, E., ANTONIOL, G., AND TONELLA, P. 1996.

Understanding the Architecture of Software Systems. In Proceedings of the 4

Workshop on Program Comprehension, 187-196.

FIX, V., WIEDENBECK, S., AND SCHOLTZ, J. 1993. Mental Representations of

Programs by Novices and Experts. In Proceedings oflNTERCHI '93, (April 1993), 74-

79.

FURNAS, G.W. 1986. Generalized Fisheye Views. Proceedings of CHI '86, ACM,

New York, 16-23.

GERSHON, N., AND EICK, S.G. 1995. Visualization's New Tack: Making Sense of

Information. IEEE Spectrum, (November 1995), 38-56.

GRADY, R.B, AND CASWELL, D.L. 1987. Software Metrics: Establishing a

Company-Wide Program, Prentice-Hall, Englewood Cliffs, NJ.

151

GRADY, R.B. 1992. Practical Software Metrics for Project Management and

Process Improvement, Prentice-Hall, Englewood Cliffs, NJ.

HALL, T., AND FENTON, N. 1997. Implementing Effective Software Metrics

Programs. IEEE Software, (March/April 1997), 55-64.

HALSTEAD, M. 1997. Elements of Software Science, Elsevier Science Press.

HAROLD, E.R. 1997. Java Network Programming. O'Reilly & Associates, Inc,

Sebastopol, CA.

HARTSON, H.R., CASTILLO, J.C., KELSO, J., KAMLER, J., AND NEALE, W.C.

1996. Remote Evaluation: The Network as an Extension of the Usability Laboratory. In

Proceedings, Conference on Human Factors in Computing Systems (CHI '96), 228-235.

HENDERSEN-SELLERS, B. 1996. Object-Oriented Metrics: Measures of

Complexity, Prentice-Hall, Englewood Cliffs, NJ.

HENDRIX, T.D., CROSS II, J.H., BAROWSKI, L., AND MATHIAS, K.S. 1998.

Providing Enhanced Visual Support for Software Development and Maintenance.

Proceedings of the 36th Annual ACM Southeast Conference, Marietta, GA, (April 1998),

23-28.

HERITAGE 1989. The American Heritage Dictionary, Dell Publishing.

HILBERT, D., AND REDMILES, D. 1998. Agents for Collecting Application Usage

Data Over The Internet. In Proceedings, Second International Conference on

Autonomous Agents (Agents '98).

152

HORSTMANN, C.S., AND CORNELL, G. 1997. Core Java 1.1, Volume 1-

Fundamentals, Prentice Hall, Englewood Cliffs, NJ.

HUDEPOHL, J.P., AUD, S.J., KHOSHGOFTAAR, T.M., ALLEN, E.B., AND

MAYRANDJ. 1996. Emerald: Software Metrics and Models on the Desktop. IEEE

Software, (September 1996), 56-60.

HUMPHREY, W.S. 1997. Introduction to the Personal Software Process. Addison-

Wesley.

JONES, C. 1991. Applied Software Measurement, McGraw Hill.

JONES, C. 1996a. Programming Languages Table. Software Productivity Research,

Inc., Online Article, March 1996, <http://www.spr.com/library/01angtbl.htm>

JONES, C. 1996b. Our Worst Current Development Practices. IEEE Software,

(March 1996), 102-104.

KAN, S.H. 1995. Metrics and Models in Software Quality Engineering, Addison-

Wesley.

KAY, J., AND THOMAS, R.C. 1995. Studying Long-Term System Use,

Communications of the ACM, 38, 7 (July 1995), 61-69.

KITCHENHAM, B., PFLEEGER, S.L., AND FENTON, N. 1995. Towards a

Framework for Software Measurement Validation. IEEE Transactions on Software

Engineering, 21, 12 (December 1995), 929-943.

KORTH, H.F., AND SILBERSCHATZ, A. 1991, Database System Concepts,

McGraw-Hill Inc., New York, NY.

153

KRUGLINSKI, DJ. 1996, Inside Visual C++, Microsoft Press, Redmond, WA.

LEDGARD, H.F. 1975. Programming Proverbs, Hayden Book Company, NJ.

LEUNG, Y.K., AND APPERLY, M.D. 1994. A Review and Taxonomy of

Distortion-Oriented Presentation Techniques. ACM Transactions on Computer-Human

Interaction, 1, 2 (June 1994), 126-160.

LINOS, P., AUBET, P., DUMAS, L., HELLEBOID, Y., LEJEUNE, P., AND

TULULA, P. 1993. Facilitating the Comprehension of C Programs: An Experimental

Study. Proceedings of the 2nd Workshop on Program Comprehension, Capri, Italy, (July

1993), 78-86.

LORENZ, M., AND KTDD, J. 1994. Object-Oriented Software Metrics, Prentice-

Hall, Englewood Cliffs, NJ.

MACKINLAY, J.D., ROBERTSON, G.G., AND CARD, S.K. 1991. The Perspective

Wall: Detail and Content Smoothly Integrated, In Proceedings CHI '96. 173-179.

MCCABE, T.J. 1976. A Complexity Measure. IEEE Transactions on Software

Engineering, SE-2, 4 (December 1976), 308-320.

MCCABE, T.J., AND BUTLER, C.W. 1989. Design Complexity Measurement and

Testing. Communications of the ACM, 32, 12 (December 1989), 1415-1425.

MCCALL, J., RICHARDS, P., AND WALTERS, G. 1977. Factors in Software

Quality. RADC-TR-77-369, Vol I - III, November 1977. NTIS AD-A049-014, 015,

055.

154

MCQUAID, P. 1996. Profiling Software Complexity. Ph.D Dissertation, Auburn

University, Auburn, AL, August 1996.

MIARA, R.J., MUSSELMAN, JA., NAVARRO, JA., AND SHNEIDERMAN, B.

1983. Program Indentation and Comprehensibility. Communications of the ACM, 26,11

(November 1983), 861-867.

NASSI, I., AND SHNEIDERMAN, B. 1973. Flowchart Techniques for Structured

Programming. ACMSIGPLANNotices, 8, 8,12-26.

NEAL, A. S., AND SIMONS, R. M. 1983. Playback: A Method for Evaluating the

Usability of Software and its Documentation. In Proceedings, Conference on Human

Factors in Computing Systems (CHI '83), 78-82.

OFFEN, R.J., AND JEFFREY, R. 1997. Establishing Software Measurement

Programs. IEEE Software, (March/April 1997), 45-53.

PENNTNGTON, N. 1987. Comprehension Strategies in Programming. Empirical

Studies of Programmers: Second Workshop, Ablex Publishing Corporation, Norwood,

NJ, 100-113.

PERRY, D.E., STAUDENMAYER, N.A., AND VOTTA, L.G. 1994. People,

Organizations, and Process Improvement. IEEE Software, (July 1994), 35-45.

PETZOLD, C. 1996, Programming Windows 95, Microsoft Press, Redmond, WA.

PFLEEGER, S.L. 1997. Status Report on Software Measurement. IEEE Software,

(March/April 1997), 33-43.

155

PRESSMAN, R. 1997. Software Engineering: A Practitioners Approach, McGraw-

Hill.

RATIONAL CORPORATION 1997. UML Specification Version 1.1. Online

document available at www.rational.com/uml.

ROSS, N. 1987. The Collection and Use of Data for Monitoring Software Projects.

In Measurement for Software Control and Assurance, B.A. Kitchenham and B.

Littlewood, editors, Elsevier Science Publishers, Essex, U.K.

RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., AND LORENSEN,

W. 1991. Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ.

SARKAR, M., AND BROWN, M.H. 1994. Graphical Fisheye Views.

Communications of the ACM, 37, 12 (December 1994), 73-84.

SHEPPERD, M., AND INCE, D. 1993. Derivation and Validation of Software

Metrics, Oxford Science Publications.

SIDARKEVICUTE, D., TYUGU, E., AND KUUSIK, A. 1996. A Knowledge-Based

Toolkit for Software Visualization. Proceedings of Knowledge Based Software

Engineering 1996.

SIOCHI, A.C., AND EHRICH, R.W. 1991. Computer Analysis of User Interfaces

Based on Repetition in Transcripts of User Sessions, ACM Transactions on Information

Systems, 9, 4 (October 1991), 309-335.

156

SOLOWAY, E., BONAR, J., AND EHRLICH, K. 1983. Cognitive Strategies and

Looping Constructs: An Empirical Study. Communications of the ACM, 26, 11

(November 1983), 853-860.

SOLOWAY, E. 1986. Learning to Program = Learning to Construct Mechanisms and

Explanations. Communications of the ACM, 29, 9 (September 1986), 850-858.

SPC 1995. (The Software Productivity Consortium), The Software Measurement

Guidebook, International Thomson Computer Press, London, UK.

STOREY, M.-A.D., FRACCHIA, F.D., AND MÜLLER, H.A. 1997. Cognitive

Design Elements to Support the Construction of a Mental Model during Software

Visualization. Proceedings of the 5th International Workshop on Program

Comprehension, 17-28.

TAPP, R., AND KAZMAN, R. 1994. Determining the Usefulness of Colour and

Fonts in a Programming Task. Proceedings of the 3rd Workshop on Program

Comprehension, Washington, D.C., 154-161.

TEATE, J. 1998. An Analysis of the Use of the GRASP Software Engineering

Environment and the Control Structure Diagram, Masters Degree Thesis, Auburn

University, Alabama, April 1998.

WEYUKER, E.J. 1988. Evaluating Software Complexity Measures. IEEE

Transactions on Software Engineering, 14, 9 (September 1988), 1357-1365.

157

VON MAYRHAUSER, A., AND VANS, A.M. 1993. From Program

Comprehension to Tool Requirements for an Industrial Environment. Proceedings of the

2nd Workshop on Program Comprehension, Capri, Italy, (July 1993), 78-86.

VON MAYRHAUSER, A., AND VANS, A.M. 1994. Dynamic Code Cognition

Behaviors for Large Scale Code. Proceedings of the 3r Workshop on Program

Comprehension, Washington, D.C., (November 1994), 74-81.

VON MAYRHAUSER, A, AND VANS, AM. 1996a. Identification of Dynamic

Comprehension Processes During Large Scale Maintenance. IEEE Transactions on

Software Engineering, 22, 6, 424-437.

VON MAYRHAUSER, A, AND VANS, AM. 1996b. On the Role of Hypotheses

during Opportunistic Understanding While Porting Large Scale Code. Proceedings of the

4l Workshop on Program Comprehension, 68-77.

WILDE, N., AND CASEY, C. 1996. Early Field Experience with the Software

Reconnaissance Technique for Program Comprehension. Proceedings of the 3rd Working

Conference on Reverse Engineering, 312-318.

YOURDON, E.N., AND CONSTANTINE, L.L. 1978. Structured Design, Yourdon

Press.

ZUSE, H. 1997. A Framework of Software Measurement, Walter de Gruyter & Co.,

Berlin, Germany.

APPENDIX A. ASCII EVENT FILE FORMAT

All events in an ASCII file consist of a set of fields starting with a timestamp,

followed by the event type. Additional fields define key characteristics of each event.

While any white space characters may be inserted between fields, the tab character is the

most efficient since it only requires one character and leaves the resulting file human-

readable.

Legend:

<ts> = Timestamp. Seconds elapsed since Jan 1st, 1970.

<wh> = Window Handle. Window event occurred in.

<logLOC> = Logical Lines of Code.

<phyLOC> = Physical Lines of Code.

CFEvtAlterLine: <ts> 1 <wh> <line #>

CFEvtBadCompile: <ts> 2 <wh> <# of errors>

CFEvtCSDBadGen: <ts> 3 <wh> <line #>

<text of error message>

CFEvtCSDGoodGen: <ts> 4 <wh>

CFEvtCSDOff:

CFEvtDeleteLine:

CFEvtEnterLine:

<ts> 5

<ts> 6

<wh>

<wh>

<ts> 7 <wh>

158

<start #>

<line #>

<# lines>

159

CFEvtExitLine:

CFEvtFileActive:

CFEvtFilelnactive:

CFEvtFileClose:

CFEvtFileOpen:

CFEvtFold:

CFEvtGoodCompile:

CFEvtlnsertLine:

CFEvtlnterruptOff:

CFEvtlnterruptOn:

CFEvtPhase:

CFEvtSessionEnd:

CFEvtSessionStart:

CFEvtUnfold:

CFEvtFileSave:

CFEvtFileNew:

CFEvtCSDOn:

<ts> 8

<ts> 9

<wh>

<wh>

<line #>

<ts> 10 <wh>

<ts> 11 <wh>

<ts> 12 <wh>

<ts> 13 <wh>

<ts> 14 <wh>

<ts> 15 <wh>

<ts> 16

<ts> 17

<ts> 18 <phase>

<ts> 19

<ts> 20

<ts> 21 <wh>

<ts> 26 <wh>

<ts> 27 <wh>

<ts> 28 <wh>

<filename>

<start #> <# lines>

<start #> <# lines>

<start #>

<filename>

<# lines>

CFEvtMetricsReport: <ts> 29 <language> <wh>

The metrics report initial line is followed by subsequent lines in one of the

following formats:

File Metrics: 1 <logLOC> <phyLOC>

160

Class Metrics: 2 <logLOC> <phyLOO

Method Metrics: 3 <logLOC> <phyLOC> <complexity>

End of Report: 0

CFEvtExecuteFile: <ts> 30 <wh>

APPENDIX B. TEST SCRIPTS, FILES, AND RESULTS

B.1 DATA TEST.

The data test checked to ensure that pcGRASP was properly recording events to its event

file and that the framework was properly storing them in the database. The following test

script was executed to generate the event file:

Step Action Expected Result
1 Start pcGRASP. SessionStart event written
2 Create new Java file (designate this

Window 1).
FileNew event written
FileActive event written
InsertLine at line 1 event written
EnterLine at line 1 event written

3 Open previously created Java file
"TestPlanl j ava". (designate
Window 2). Record time.

FileOpen event written
Filelnactive for Window 1 written
FileActive event for Window 2
written
EnterLine at line 1 event written

4 Click on Window 1, line 1. Filelnactive for Window 2 written
FileActive for Window 1 written

5 Enter the following source code:
public class TestPlan
{

public static void main(String [] args)
{

System.out.println("TestPlan")
// Delete

}
}

a) AlterLine for line 1
b) InsertLine for line 2
c) EnterLine for line 2
d) AlterLine for line 2
(repeat b,c,d for lines 3,4,5,6,7,8)

6 Save file as "TestPlan.java" FileSave event with name
"TestPlan.java" written

7 Click "Compile" BadCompile event written with 1
error

8 Click "Generate CSD" BadCSDGen event written
9 Click on line numbers button, add EnterLine event for line 5

161

162

Step Action Expected Result 1
semicolon to end of line5. AlterLine event for line 5

10 Click "Save" FileSave event with name
"TestPlan.java" written

11 Click "Compile" GoodCompile event written
12 Click "Generate CSD" GoodCSDGen event written
13 Click "Run" FileExecution event written
14 Delete line 6 by highlighting it and

then pressing the DEL key followed
by BACKSPACE

DeleteLine event for line 6

15 Click "Save As" from menu. Save
as "TestPlan2.iava"

FileSave event with name
"TestPlanl.Java" written.

16 Wait 60 seconds (Leaves time gap to show TestPlanl
was active during this time)

17 Close "TestPlan2.java" in Window 1 FileClose event on Window 1
FileActive event on Window 2

18 Wait 120 seconds (Leave time gap to show some
activity)

19 Exit pcGRASP via Exit on the File
menu.

FileClose event on Window 1
SessionEnd event

20 Start pcGRASP SessionStart event written
FileOpen event for "TestPlanl Java"
CSDOn event for "TestPlanl .Java"
FileActive event for
"TestPlanl.Java"
EnterLine event for
"TestPlanl.iava"

21 Wait 60 seconds. (Leave time gap to show some
activity)

22 Exit pcGRASP via Exit on the File
menu.

FileClose event
SessionEnd event

The resulting event file follows:

936283441 20
936283459 27 0
936283459 9 0
936283474 9 0
936283474 10 0
936283474 9 0
936283474 10 0
936283475 12 1
936283475 9 1
936283475 28 1

F:\mathias\dissertation\diss\Testl.Java

163

936283479 10 1
936283479 9 0
936283483 10 1
936283488 15 0 2 1
936283488 7 0 2
936283489 10 2
936283491 15 0 3 1
936283491 7 0 3
936283491 10 3
936283501 15 0 4 1
936283501 7 0 4
936283502 10 4
936283502 15 0 5 1
936283502 7 0 5
936283503 10 5
936283513 15 0 6 1
936283513 7 0 6
936283513 10 6
936283517 15 0 7 1
936283517 7 0 7
936283518 10 7
936283519 15 0 8 1
936283519 7 0 8
936283520 10 8
936283536 9 0
936283536 10 0
936283536 9 0
936283536 26 0 F:\mathias\dissertation\diss\TestPlan.java
936283540 26 0 F:\mathias\dissertation\diss\TestPlan.java
936283540 26 1 F:\mathias\dissertation\diss\Testl.java
936283544 2 0 1
936283547 9 0
936283547 3 0
F:\mathias\dissertation\diss\TestPlan.java:7 Grasp: Syntax (parse) error at or before

ii \ it

936283557 7 0 5
936283559 10 5
936283562 26 0 F:\mathias\dissertation\diss\TestPlan.java
936283565 26 0 F:\mathias\dissertation\diss\TestPlan.java
936283565 26 1 F:\mathias\dissertation\diss\Testl.java
936283569 14 0
936283572 4 0
936283576 30 0
936283576 10 0
936283576 10 0
936283576 9 0
936283586 7 0 6
936283589 1 0' 6
936283591 10 5
936283592 6 0 6 1
936283592 7 0 5
936283603 9 0
936283603 10 0
936283603 9 0
936283603 26 0 F:\mathias\dissertation\diss\TestPlan2.java
936283666 11 0
936283666 10 0
936283666 9 1
936283666 10 0
936283787 10 1
936283787 11 1
936283787 10 1
936283787 10 1
936283787 19
936283793 20

164

936283793 12 0
936283793 9 0
936283793 28 0
936283857 10 0
936283857 11 0
936283857 10 0
936283857 10 0
936283857 19

F:\mathias\dissertation\diss\Testl.java

B.2 METRICS COLLECTION TEST

The metrics test was designed to ensure that the metrics data collected and written to an

event file, was properly stored in the framework database. To exercise this, the following

files were run through the metric generation routines:

File One:

i public class Testl
*

public void methodlO

i public boolean method2(int x)
if (x>0)

return true;
else
— return false;

*
public boolean method3(int x, int y)

if ((x>0)&&(y>0))
return true;

else
return false;

i public int method4(int x)
I switch(x)

{

165

default:
return 0;

*
public int method5(int x)

—" int y;
switch(x)

{

L}

case 1:

— y = 1;
— break;

0 1 case 2 :
— y = 2;
— break;
default:

y = 3;

■}
return y;

File Two:

package metricstest;

i public class Test2
*

public void methodK)

*
public boolean method2(int x)

if (x>0)
return true;

else
return false;

L}

166

*
public boolean method3(int x, int y)

if ((x>0)&&(y>0))
return true;

else
return false;

*
public int method4(int x)

switch(x)

default:
return 0;

i public int methods(int x)

<>

int y;
switch(x)

{
case 1:
— y = 1;

1 break;
case 2:
— y = 2;
— break;
default:

y = 3;

return y;

i class Test2a
i public int method6(int x)

{
—« int y;
-On if (x < 0)

return 0;

}
switch(x)

{
case 0:
 y = 0;

1 break;
0 1 case 1:

(>

167

h- y = l;
1 break;
default:

y = 2;

return y;

*
public int method7(int x)

int y;
—Ol if (x > 0)

{
switch(x)

(> case 0:
— y = 0;
— break;

0 1 case 1:
— y = 1;
— break;
default:

y = 2;

}

else

{
 y = 3;

}
return y;

*
public int method9(int x)

6

int y;
switch(x)

{
case 0:
— y = 0;

' break;
0 1 case 1:

case 2:
— y = l;
-On if (x == 2)

}
y = 2;

1 break;
default:

y = 2;

return y;

File Three:

package metricstest;

168

<f public class Test3

i public void TestMethodO
int testlnterface =

i new Testlnterface()
I public int AnonMethod(int x)

-Oi if (x>=0)

{
return x;

}
else

{
 return Math.abs(x);

 testlnterface.AnonMethod(0);

L}

i class TestClass

public void innerMethod(int x)

switch(x)

{
case 0:
— System.out.println("0") ;
— break;

0 1 case 1:
 System.out.println("l");

1 break;

169

I public interface Testinterface

S public int AnonMethod(int x);
L}

B.3 DATA LOAD TEST

The data load test exercised the ability of the framework and database to process large

numbers of events. The following information is the raw data recorded to compute the

results shown in Table 5-1.

Events DB Size
Insert
Time

Full
Extract

Single
Extract

50058 13042k 1425.53 66.19 .49
48.44 .27
53.82 .28
45.04 .22
49.31 .31

100116 25599k 1780.41 114.03 .38
96.34 .44
97.44 .44
96.56 .39
98.62 .41

150174 38557k 2118.69 174.39 .55
167.25 .54
160.82 .55
270.18 .55
177.59 .54

200232 51515k 2426.34 272.76 .72
307.03 .66
224.76 .66
229.53 .72
248.27 .71

250290 64473k 2835.42 301.43 .83
418.86 .82
315.00 .77
289.30 .77
284.63 .77

